几何朗兰兹猜想 III 的证明:与抛物线归纳法的兼容性

Justin Campbell, Lin Chen, Joakim Faergeman, Dennis Gaitsgory, Kevin Lin, Sam Raskin, Nick Rozenblyum
{"title":"几何朗兰兹猜想 III 的证明:与抛物线归纳法的兼容性","authors":"Justin Campbell, Lin Chen, Joakim Faergeman, Dennis Gaitsgory, Kevin Lin, Sam Raskin, Nick Rozenblyum","doi":"arxiv-2409.07051","DOIUrl":null,"url":null,"abstract":"We establish the compatibility of the Langlands functor with the operations\nof Eisenstein series constant term, and deduce that the Langlands functor\ninduces an equivalence on Eisenstein-generated subcategories.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of the geometric Langlands conjecture III: compatibility with parabolic induction\",\"authors\":\"Justin Campbell, Lin Chen, Joakim Faergeman, Dennis Gaitsgory, Kevin Lin, Sam Raskin, Nick Rozenblyum\",\"doi\":\"arxiv-2409.07051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish the compatibility of the Langlands functor with the operations\\nof Eisenstein series constant term, and deduce that the Langlands functor\\ninduces an equivalence on Eisenstein-generated subcategories.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了朗兰兹函子与爱森斯坦数列常数项运算的兼容性,并推导出朗兰兹函子在爱森斯坦生成的子范畴上产生了等价关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of the geometric Langlands conjecture III: compatibility with parabolic induction
We establish the compatibility of the Langlands functor with the operations of Eisenstein series constant term, and deduce that the Langlands functor induces an equivalence on Eisenstein-generated subcategories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信