二维加权完全交叉的有效非消失

Chen Jiang, Puyang Yu
{"title":"二维加权完全交叉的有效非消失","authors":"Chen Jiang, Puyang Yu","doi":"arxiv-2409.07828","DOIUrl":null,"url":null,"abstract":"We show Kawamata's effective nonvanishing conjecture (also known as the\nAmbro--Kawamata nonvanishing conjecture) holds for quasismooth weighted\ncomplete intersections of codimension $2$. Namely, for a quasismooth weighted\ncomplete intersection $X$ of codimension $2$ and an ample Cartier divisor $H$\non $X$ such that $H-K_X$ is ample, the linear system $|H|$ is nonempty.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective nonvanishing for weighted complete intersections of codimension two\",\"authors\":\"Chen Jiang, Puyang Yu\",\"doi\":\"arxiv-2409.07828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show Kawamata's effective nonvanishing conjecture (also known as the\\nAmbro--Kawamata nonvanishing conjecture) holds for quasismooth weighted\\ncomplete intersections of codimension $2$. Namely, for a quasismooth weighted\\ncomplete intersection $X$ of codimension $2$ and an ample Cartier divisor $H$\\non $X$ such that $H-K_X$ is ample, the linear system $|H|$ is nonempty.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明川俣的有效不消失猜想(又称安布罗--川俣不消失猜想)对于标度为 2$ 的类平滑加权完整交集成立。也就是说,对于一个标度为 2$ 的类平滑加权完全交集 $X$,以及一个在 $X$ 上的充裕卡蒂埃除数 $H$ (使得 $H-K_X$ 是充裕的),线性系统 $|H|$ 是非空的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective nonvanishing for weighted complete intersections of codimension two
We show Kawamata's effective nonvanishing conjecture (also known as the Ambro--Kawamata nonvanishing conjecture) holds for quasismooth weighted complete intersections of codimension $2$. Namely, for a quasismooth weighted complete intersection $X$ of codimension $2$ and an ample Cartier divisor $H$ on $X$ such that $H-K_X$ is ample, the linear system $|H|$ is nonempty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信