Andriy Regeta, Christian Urech, Immanuel van Santen
{"title":"理性的群体理论特征","authors":"Andriy Regeta, Christian Urech, Immanuel van Santen","doi":"arxiv-2409.07864","DOIUrl":null,"url":null,"abstract":"Let X be an irreducible variety and Bir(X) its group of birational\ntransformations. We show that the group structure of Bir(X) determines whether\nX is rational and whether X is ruled. Additionally, we prove that any Borel subgroup of Bir(X) has derived length\nat most twice the dimension of X, with equality occurring if and only if X is\nrational and the Borel subgroup is standard. We also provide examples of\nnon-standard Borel subgroups of Bir(P^n) and Aut(A^n), thereby resolving\nconjectures by Popov and Furter-Poloni.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group Theoretical Characterizations of Rationality\",\"authors\":\"Andriy Regeta, Christian Urech, Immanuel van Santen\",\"doi\":\"arxiv-2409.07864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let X be an irreducible variety and Bir(X) its group of birational\\ntransformations. We show that the group structure of Bir(X) determines whether\\nX is rational and whether X is ruled. Additionally, we prove that any Borel subgroup of Bir(X) has derived length\\nat most twice the dimension of X, with equality occurring if and only if X is\\nrational and the Borel subgroup is standard. We also provide examples of\\nnon-standard Borel subgroups of Bir(P^n) and Aut(A^n), thereby resolving\\nconjectures by Popov and Furter-Poloni.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设 X 是不可还原 variety,Bir(X) 是其双变换群。我们证明,Bir(X) 的群结构决定了 X 是否有理以及 X 是否有规则。此外,我们还证明了 Bir(X) 的任何 Borel 子群的派生长度最多为 X 维数的两倍,只有当且仅当 X 是有理的且 Borel 子群是标准群时才会发生相等。我们还举例说明了 Bir(P^n) 和 Aut(A^n) 的非标准 Borel 子群,从而解决了 Popov 和 Furter-Poloni 的猜想。
Group Theoretical Characterizations of Rationality
Let X be an irreducible variety and Bir(X) its group of birational
transformations. We show that the group structure of Bir(X) determines whether
X is rational and whether X is ruled. Additionally, we prove that any Borel subgroup of Bir(X) has derived length
at most twice the dimension of X, with equality occurring if and only if X is
rational and the Borel subgroup is standard. We also provide examples of
non-standard Borel subgroups of Bir(P^n) and Aut(A^n), thereby resolving
conjectures by Popov and Furter-Poloni.