Stephen Coughlan, Marco Franciosi, Rita Pardini, Sönke Rollenske
{"title":"K_X^2 = 1$ 和 $χ(X) = 3$ 的 2-Gorenstein 稳定曲面","authors":"Stephen Coughlan, Marco Franciosi, Rita Pardini, Sönke Rollenske","doi":"arxiv-2409.07854","DOIUrl":null,"url":null,"abstract":"The compactification $\\overline M_{1,3}$ of the Gieseker moduli space of\nsurfaces of general type with $K_X^2 =1 $ and $\\chi(X)=3$ in the moduli space\nof stable surfaces parametrises so-called stable I-surfaces. We classify all such surfaces which are 2-Gorenstein into four types using a\nmix of algebraic and geometric techniques. We find a new divisor in the closure\nof the Gieseker component and a new irreducible component of the moduli space.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-Gorenstein stable surfaces with $K_X^2 = 1$ and $χ(X) = 3$\",\"authors\":\"Stephen Coughlan, Marco Franciosi, Rita Pardini, Sönke Rollenske\",\"doi\":\"arxiv-2409.07854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The compactification $\\\\overline M_{1,3}$ of the Gieseker moduli space of\\nsurfaces of general type with $K_X^2 =1 $ and $\\\\chi(X)=3$ in the moduli space\\nof stable surfaces parametrises so-called stable I-surfaces. We classify all such surfaces which are 2-Gorenstein into four types using a\\nmix of algebraic and geometric techniques. We find a new divisor in the closure\\nof the Gieseker component and a new irreducible component of the moduli space.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
2-Gorenstein stable surfaces with $K_X^2 = 1$ and $χ(X) = 3$
The compactification $\overline M_{1,3}$ of the Gieseker moduli space of
surfaces of general type with $K_X^2 =1 $ and $\chi(X)=3$ in the moduli space
of stable surfaces parametrises so-called stable I-surfaces. We classify all such surfaces which are 2-Gorenstein into four types using a
mix of algebraic and geometric techniques. We find a new divisor in the closure
of the Gieseker component and a new irreducible component of the moduli space.