K_X^2 = 1$ 和 $χ(X) = 3$ 的 2-Gorenstein 稳定曲面

Stephen Coughlan, Marco Franciosi, Rita Pardini, Sönke Rollenske
{"title":"K_X^2 = 1$ 和 $χ(X) = 3$ 的 2-Gorenstein 稳定曲面","authors":"Stephen Coughlan, Marco Franciosi, Rita Pardini, Sönke Rollenske","doi":"arxiv-2409.07854","DOIUrl":null,"url":null,"abstract":"The compactification $\\overline M_{1,3}$ of the Gieseker moduli space of\nsurfaces of general type with $K_X^2 =1 $ and $\\chi(X)=3$ in the moduli space\nof stable surfaces parametrises so-called stable I-surfaces. We classify all such surfaces which are 2-Gorenstein into four types using a\nmix of algebraic and geometric techniques. We find a new divisor in the closure\nof the Gieseker component and a new irreducible component of the moduli space.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-Gorenstein stable surfaces with $K_X^2 = 1$ and $χ(X) = 3$\",\"authors\":\"Stephen Coughlan, Marco Franciosi, Rita Pardini, Sönke Rollenske\",\"doi\":\"arxiv-2409.07854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The compactification $\\\\overline M_{1,3}$ of the Gieseker moduli space of\\nsurfaces of general type with $K_X^2 =1 $ and $\\\\chi(X)=3$ in the moduli space\\nof stable surfaces parametrises so-called stable I-surfaces. We classify all such surfaces which are 2-Gorenstein into four types using a\\nmix of algebraic and geometric techniques. We find a new divisor in the closure\\nof the Gieseker component and a new irreducible component of the moduli space.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在稳定曲面的模空间中,$K_X^2 =1$和$\chi(X)=3$的一般类型曲面的Gieseker模空间的$overline M_{1,3}$紧凑化产生了所谓的稳定I型曲面。我们利用代数与几何混合技术,将所有这类 2 戈伦斯坦曲面分为四种类型。我们在 Gieseker 分量的闭合中发现了一个新的除数,并在模空间中发现了一个新的不可还原分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2-Gorenstein stable surfaces with $K_X^2 = 1$ and $χ(X) = 3$
The compactification $\overline M_{1,3}$ of the Gieseker moduli space of surfaces of general type with $K_X^2 =1 $ and $\chi(X)=3$ in the moduli space of stable surfaces parametrises so-called stable I-surfaces. We classify all such surfaces which are 2-Gorenstein into four types using a mix of algebraic and geometric techniques. We find a new divisor in the closure of the Gieseker component and a new irreducible component of the moduli space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信