牛顿多面体与环状变体上理想的积分闭合

Amanda S. Araújo, Thaís M. Dalbelo, Thiago da Silva
{"title":"牛顿多面体与环状变体上理想的积分闭合","authors":"Amanda S. Araújo, Thaís M. Dalbelo, Thiago da Silva","doi":"arxiv-2409.07986","DOIUrl":null,"url":null,"abstract":"In this work, we extend Saia's results on the characterization of Newton\nnon-degenerate ideals to the context of ideals in $O_{X(S)}$, where $X(S)$ is\nan affine toric variety defined by the semigroup $S\\subset \\mathbb{Z}^{n}_{+}$.\nWe explore the relationship between the integral closure of ideals and the\nNewton polyhedron. We introduce and characterize non-degenerate ideals, showing\nthat their integral closure is generated by specific monomials related to the\nNewton polyhedron.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Newton polyhedra and the integral closure of ideals on toric varieties\",\"authors\":\"Amanda S. Araújo, Thaís M. Dalbelo, Thiago da Silva\",\"doi\":\"arxiv-2409.07986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we extend Saia's results on the characterization of Newton\\nnon-degenerate ideals to the context of ideals in $O_{X(S)}$, where $X(S)$ is\\nan affine toric variety defined by the semigroup $S\\\\subset \\\\mathbb{Z}^{n}_{+}$.\\nWe explore the relationship between the integral closure of ideals and the\\nNewton polyhedron. We introduce and characterize non-degenerate ideals, showing\\nthat their integral closure is generated by specific monomials related to the\\nNewton polyhedron.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们将萨伊亚关于牛顿非退化理想的表征的结果扩展到$O_{X(S)}$中的理想,其中$X(S)$是由半群$S\subset \mathbb{Z}^{n}_{+}$定义的仿射环综。我们引入并描述了非退化理想,证明它们的积分闭包是由与牛顿多面体相关的特定单项式生成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Newton polyhedra and the integral closure of ideals on toric varieties
In this work, we extend Saia's results on the characterization of Newton non-degenerate ideals to the context of ideals in $O_{X(S)}$, where $X(S)$ is an affine toric variety defined by the semigroup $S\subset \mathbb{Z}^{n}_{+}$. We explore the relationship between the integral closure of ideals and the Newton polyhedron. We introduce and characterize non-degenerate ideals, showing that their integral closure is generated by specific monomials related to the Newton polyhedron.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信