{"title":"古谢尔-穆凯变种上的四边形","authors":"Olivier Debarre, Alexander Kuznetsov","doi":"arxiv-2409.03528","DOIUrl":null,"url":null,"abstract":"We study Hilbert schemes of quadrics of dimension $k \\in \\{0,1,2,3\\}$ on\nsmooth Gushel-Mukai varieties $X$ of dimension $n \\in \\{2,3,4,5,6\\}$ by\nrelating them to the relative Hilbert schemes of linear subspaces of dimension\n$k + 1$ of a certain family, naturally associated with $X$, of quadrics of\ndimension $n - 1$ over the blowup of $\\mathbf{P}^5$ at a point.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"172 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadrics on Gushel-Mukai varieties\",\"authors\":\"Olivier Debarre, Alexander Kuznetsov\",\"doi\":\"arxiv-2409.03528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Hilbert schemes of quadrics of dimension $k \\\\in \\\\{0,1,2,3\\\\}$ on\\nsmooth Gushel-Mukai varieties $X$ of dimension $n \\\\in \\\\{2,3,4,5,6\\\\}$ by\\nrelating them to the relative Hilbert schemes of linear subspaces of dimension\\n$k + 1$ of a certain family, naturally associated with $X$, of quadrics of\\ndimension $n - 1$ over the blowup of $\\\\mathbf{P}^5$ at a point.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"172 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了维数为 $k in \{0,1,2,3\}$ 的光滑 Gushel-Mukai varieties $X$ 上维数为 $n in \{2,3,4,5、6\}$ 的维数为 $k + 1$ 的线性子空间的相对希尔伯特方案相关联,自然与 $X$ 相关联。
We study Hilbert schemes of quadrics of dimension $k \in \{0,1,2,3\}$ on
smooth Gushel-Mukai varieties $X$ of dimension $n \in \{2,3,4,5,6\}$ by
relating them to the relative Hilbert schemes of linear subspaces of dimension
$k + 1$ of a certain family, naturally associated with $X$, of quadrics of
dimension $n - 1$ over the blowup of $\mathbf{P}^5$ at a point.