古谢尔-穆凯变种上的四边形

Olivier Debarre, Alexander Kuznetsov
{"title":"古谢尔-穆凯变种上的四边形","authors":"Olivier Debarre, Alexander Kuznetsov","doi":"arxiv-2409.03528","DOIUrl":null,"url":null,"abstract":"We study Hilbert schemes of quadrics of dimension $k \\in \\{0,1,2,3\\}$ on\nsmooth Gushel-Mukai varieties $X$ of dimension $n \\in \\{2,3,4,5,6\\}$ by\nrelating them to the relative Hilbert schemes of linear subspaces of dimension\n$k + 1$ of a certain family, naturally associated with $X$, of quadrics of\ndimension $n - 1$ over the blowup of $\\mathbf{P}^5$ at a point.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadrics on Gushel-Mukai varieties\",\"authors\":\"Olivier Debarre, Alexander Kuznetsov\",\"doi\":\"arxiv-2409.03528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Hilbert schemes of quadrics of dimension $k \\\\in \\\\{0,1,2,3\\\\}$ on\\nsmooth Gushel-Mukai varieties $X$ of dimension $n \\\\in \\\\{2,3,4,5,6\\\\}$ by\\nrelating them to the relative Hilbert schemes of linear subspaces of dimension\\n$k + 1$ of a certain family, naturally associated with $X$, of quadrics of\\ndimension $n - 1$ over the blowup of $\\\\mathbf{P}^5$ at a point.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了维数为 $k in \{0,1,2,3\}$ 的光滑 Gushel-Mukai varieties $X$ 上维数为 $n in \{2,3,4,5、6\}$ 的维数为 $k + 1$ 的线性子空间的相对希尔伯特方案相关联,自然与 $X$ 相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadrics on Gushel-Mukai varieties
We study Hilbert schemes of quadrics of dimension $k \in \{0,1,2,3\}$ on smooth Gushel-Mukai varieties $X$ of dimension $n \in \{2,3,4,5,6\}$ by relating them to the relative Hilbert schemes of linear subspaces of dimension $k + 1$ of a certain family, naturally associated with $X$, of quadrics of dimension $n - 1$ over the blowup of $\mathbf{P}^5$ at a point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信