投影空间有理曲线的对称矩阵和微分

Chen Song
{"title":"投影空间有理曲线的对称矩阵和微分","authors":"Chen Song","doi":"arxiv-2409.03985","DOIUrl":null,"url":null,"abstract":"In this paper, we study whether a given morphism $f$ from the tangent bundle\nof $\\mathbb{P}^1$ to a balanced vector bundle of degree $(n+1)d$ is induced by\nthe restriction of the tangent bundle $T_{\\mathbb{P}^n}$ to a rational curve of\ndegree $d$ in $\\mathbb{P}^n$. We propose a conjecture on this problem based on\nMathematica computations of some examples and provide computer-assisted proof\nof the conjecture for certain values of $n$ and $d$.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Syzygy Matrix and the Differential for Rational Curves in Projective Space\",\"authors\":\"Chen Song\",\"doi\":\"arxiv-2409.03985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study whether a given morphism $f$ from the tangent bundle\\nof $\\\\mathbb{P}^1$ to a balanced vector bundle of degree $(n+1)d$ is induced by\\nthe restriction of the tangent bundle $T_{\\\\mathbb{P}^n}$ to a rational curve of\\ndegree $d$ in $\\\\mathbb{P}^n$. We propose a conjecture on this problem based on\\nMathematica computations of some examples and provide computer-assisted proof\\nof the conjecture for certain values of $n$ and $d$.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了从 $\mathbb{P}^1$ 的切线束到阶数为 $(n+1)d$ 的平衡向量束的给定态 $f$ 是否由切线束 $T_{\mathbb{P}^n}$ 到 $\mathbb{P}^n$ 中阶数为 $d$ 的有理曲线的限制所诱导。我们基于对一些例子的 Mathematica 计算,提出了关于这个问题的猜想,并提供了对 $n$ 和 $d$ 的某些值的计算机辅助证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Syzygy Matrix and the Differential for Rational Curves in Projective Space
In this paper, we study whether a given morphism $f$ from the tangent bundle of $\mathbb{P}^1$ to a balanced vector bundle of degree $(n+1)d$ is induced by the restriction of the tangent bundle $T_{\mathbb{P}^n}$ to a rational curve of degree $d$ in $\mathbb{P}^n$. We propose a conjecture on this problem based on Mathematica computations of some examples and provide computer-assisted proof of the conjecture for certain values of $n$ and $d$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信