{"title":"投影空间有理曲线的对称矩阵和微分","authors":"Chen Song","doi":"arxiv-2409.03985","DOIUrl":null,"url":null,"abstract":"In this paper, we study whether a given morphism $f$ from the tangent bundle\nof $\\mathbb{P}^1$ to a balanced vector bundle of degree $(n+1)d$ is induced by\nthe restriction of the tangent bundle $T_{\\mathbb{P}^n}$ to a rational curve of\ndegree $d$ in $\\mathbb{P}^n$. We propose a conjecture on this problem based on\nMathematica computations of some examples and provide computer-assisted proof\nof the conjecture for certain values of $n$ and $d$.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Syzygy Matrix and the Differential for Rational Curves in Projective Space\",\"authors\":\"Chen Song\",\"doi\":\"arxiv-2409.03985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study whether a given morphism $f$ from the tangent bundle\\nof $\\\\mathbb{P}^1$ to a balanced vector bundle of degree $(n+1)d$ is induced by\\nthe restriction of the tangent bundle $T_{\\\\mathbb{P}^n}$ to a rational curve of\\ndegree $d$ in $\\\\mathbb{P}^n$. We propose a conjecture on this problem based on\\nMathematica computations of some examples and provide computer-assisted proof\\nof the conjecture for certain values of $n$ and $d$.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Syzygy Matrix and the Differential for Rational Curves in Projective Space
In this paper, we study whether a given morphism $f$ from the tangent bundle
of $\mathbb{P}^1$ to a balanced vector bundle of degree $(n+1)d$ is induced by
the restriction of the tangent bundle $T_{\mathbb{P}^n}$ to a rational curve of
degree $d$ in $\mathbb{P}^n$. We propose a conjecture on this problem based on
Mathematica computations of some examples and provide computer-assisted proof
of the conjecture for certain values of $n$ and $d$.