有理曲面切线束的正切性与新反偶函数除数

Hosung Kim, Jeong-Seop Kim, Yongnam Lee
{"title":"有理曲面切线束的正切性与新反偶函数除数","authors":"Hosung Kim, Jeong-Seop Kim, Yongnam Lee","doi":"arxiv-2408.14411","DOIUrl":null,"url":null,"abstract":"In this paper, we study the property of bigness of the tangent bundle of a\nsmooth projective rational surface with nef anticanonical divisor. We first\nshow that the tangent bundle $T_S$ of $S$ is not big if $S$ is a rational\nelliptic surface. We then study the property of bigness of the tangent bundle\n$T_S$ of a weak del Pezzo surface $S$. When the degree of $S$ is $4$, we\ncompletely determine the bigness of the tangent bundle through the\nconfiguration of $(-2)$-curves. When the degree $d$ of $S$ is less than or\nequal to $3$, we get a partial answer. In particular, we show that $T_S$ is not\nbig when the number of $(-2)$-curves is less than or equal to $7-d$, and $T_S$\nis big when $d=3$ and $S$ has the maximum number of $(-2)$-curves. The main\ningredient of the proof is to produce irreducible effective divisors on\n$\\mathbb{P}(T_S)$, using Serrano's work on the relative tangent bundle when $S$\nhas a fibration, or the total dual VMRT associated to a conic fibration on $S$.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positivity of the tangent bundle of rational surfaces with nef anticanonical divisor\",\"authors\":\"Hosung Kim, Jeong-Seop Kim, Yongnam Lee\",\"doi\":\"arxiv-2408.14411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the property of bigness of the tangent bundle of a\\nsmooth projective rational surface with nef anticanonical divisor. We first\\nshow that the tangent bundle $T_S$ of $S$ is not big if $S$ is a rational\\nelliptic surface. We then study the property of bigness of the tangent bundle\\n$T_S$ of a weak del Pezzo surface $S$. When the degree of $S$ is $4$, we\\ncompletely determine the bigness of the tangent bundle through the\\nconfiguration of $(-2)$-curves. When the degree $d$ of $S$ is less than or\\nequal to $3$, we get a partial answer. In particular, we show that $T_S$ is not\\nbig when the number of $(-2)$-curves is less than or equal to $7-d$, and $T_S$\\nis big when $d=3$ and $S$ has the maximum number of $(-2)$-curves. The main\\ningredient of the proof is to produce irreducible effective divisors on\\n$\\\\mathbb{P}(T_S)$, using Serrano's work on the relative tangent bundle when $S$\\nhas a fibration, or the total dual VMRT associated to a conic fibration on $S$.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了具有新反偶函数除数的光滑投影有理曲面的切线束的无大性质。我们首先证明,如果 $S$ 是有理椭圆曲面,那么 $S$ 的切线束 $T_S$ 就不大。然后,我们研究弱 del Pezzo 曲面 $S$ 的切线束 $T_S$ 的大的性质。当 $S$ 的阶数为 $4$ 时,我们通过 $(-2)$ 曲线的配置完全确定了切线束的大小。当$S$的度数$d$小于等于$3$时,我们可以得到部分答案。特别是,我们证明了当 $(-2)$ 曲线的数目小于或等于 $7-d$ 时,$T_S$ 不大;而当 $d=3$ 且 $S$ 的 $(-2)$ 曲线数目最大时,$T_S$ 大。证明的主要内容是利用塞拉诺关于$S$有纤度时的相对切线束的研究,或与$S$上圆锥纤度相关的总对偶 VMRT,在$mathbb{P}(T_S)$上产生不可还原的有效除数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positivity of the tangent bundle of rational surfaces with nef anticanonical divisor
In this paper, we study the property of bigness of the tangent bundle of a smooth projective rational surface with nef anticanonical divisor. We first show that the tangent bundle $T_S$ of $S$ is not big if $S$ is a rational elliptic surface. We then study the property of bigness of the tangent bundle $T_S$ of a weak del Pezzo surface $S$. When the degree of $S$ is $4$, we completely determine the bigness of the tangent bundle through the configuration of $(-2)$-curves. When the degree $d$ of $S$ is less than or equal to $3$, we get a partial answer. In particular, we show that $T_S$ is not big when the number of $(-2)$-curves is less than or equal to $7-d$, and $T_S$ is big when $d=3$ and $S$ has the maximum number of $(-2)$-curves. The main ingredient of the proof is to produce irreducible effective divisors on $\mathbb{P}(T_S)$, using Serrano's work on the relative tangent bundle when $S$ has a fibration, or the total dual VMRT associated to a conic fibration on $S$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信