变形金刚能做枚举几何吗?

Baran Hashemi, Roderic G. Corominas, Alessandro Giacchetto
{"title":"变形金刚能做枚举几何吗?","authors":"Baran Hashemi, Roderic G. Corominas, Alessandro Giacchetto","doi":"arxiv-2408.14915","DOIUrl":null,"url":null,"abstract":"How can Transformers model and learn enumerative geometry? What is a robust\nprocedure for using Transformers in abductive knowledge discovery within a\nmathematician-machine collaboration? In this work, we introduce a new paradigm\nin computational enumerative geometry in analyzing the $\\psi$-class\nintersection numbers on the moduli space of curves. By formulating the\nenumerative problem as a continuous optimization task, we develop a\nTransformer-based model for computing $\\psi$-class intersection numbers based\non the underlying quantum Airy structure. For a finite range of genera, our\nmodel is capable of regressing intersection numbers that span an extremely wide\nrange of values, from $10^{-45}$ to $10^{45}$. To provide a proper inductive\nbias for capturing the recursive behavior of intersection numbers, we propose a\nnew activation function, Dynamic Range Activator (DRA). Moreover, given the\nsevere heteroscedasticity of $\\psi$-class intersections and the required\nprecision, we quantify the uncertainty of the predictions using Conformal\nPrediction with a dynamic sliding window that is aware of the number of marked\npoints. Next, we go beyond merely computing intersection numbers and explore\nthe enumerative \"world-model\" of the Transformers. Through a series of causal\ninference and correlational interpretability analyses, we demonstrate that\nTransformers are actually modeling Virasoro constraints in a purely data-driven\nmanner. Additionally, we provide evidence for the comprehension of several\nvalues appearing in the large genus asymptotic of $\\psi$-class intersection\nnumbers through abductive hypothesis testing.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can Transformers Do Enumerative Geometry?\",\"authors\":\"Baran Hashemi, Roderic G. Corominas, Alessandro Giacchetto\",\"doi\":\"arxiv-2408.14915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How can Transformers model and learn enumerative geometry? What is a robust\\nprocedure for using Transformers in abductive knowledge discovery within a\\nmathematician-machine collaboration? In this work, we introduce a new paradigm\\nin computational enumerative geometry in analyzing the $\\\\psi$-class\\nintersection numbers on the moduli space of curves. By formulating the\\nenumerative problem as a continuous optimization task, we develop a\\nTransformer-based model for computing $\\\\psi$-class intersection numbers based\\non the underlying quantum Airy structure. For a finite range of genera, our\\nmodel is capable of regressing intersection numbers that span an extremely wide\\nrange of values, from $10^{-45}$ to $10^{45}$. To provide a proper inductive\\nbias for capturing the recursive behavior of intersection numbers, we propose a\\nnew activation function, Dynamic Range Activator (DRA). Moreover, given the\\nsevere heteroscedasticity of $\\\\psi$-class intersections and the required\\nprecision, we quantify the uncertainty of the predictions using Conformal\\nPrediction with a dynamic sliding window that is aware of the number of marked\\npoints. Next, we go beyond merely computing intersection numbers and explore\\nthe enumerative \\\"world-model\\\" of the Transformers. Through a series of causal\\ninference and correlational interpretability analyses, we demonstrate that\\nTransformers are actually modeling Virasoro constraints in a purely data-driven\\nmanner. Additionally, we provide evidence for the comprehension of several\\nvalues appearing in the large genus asymptotic of $\\\\psi$-class intersection\\nnumbers through abductive hypothesis testing.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

变形金刚如何建模和学习枚举几何?在数学家与机器的合作中,在归纳式知识发现中使用变换器的稳健程序是什么?在这项工作中,我们引入了一种新的计算枚举几何范式,用于分析曲线模空间上的$\psi$类交点数。通过将枚举问题表述为连续优化任务,我们开发了一种基于底层量子艾里结构的基于变换器的模型,用于计算 $\psi$ 级交点数。对于有限的属概念范围,我们的模型能够回归出从 $10^{-45}$ 到 $10^{45}$ 的跨度极大的交集数。为了为捕捉交集数的递归行为提供一个适当的归纳偏置,我们提出了一个新的激活函数--动态范围激活器(DRA)。此外,考虑到$\psi$级交点的严重异方差性和所需精度,我们使用带有动态滑动窗口的共形预测(ConformalPrediction)量化了预测的不确定性,该窗口可感知标记点的数量。接下来,我们不仅仅计算交叉点数量,还探索了变形金刚的枚举 "世界模型"。通过一系列因果推理和关联可解释性分析,我们证明了变形金刚实际上是在以纯数据驱动的方式为 Virasoro 约束建模。此外,我们还通过归纳假设检验,为$\psi$类交集数的大属渐近中出现的几个值的理解提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can Transformers Do Enumerative Geometry?
How can Transformers model and learn enumerative geometry? What is a robust procedure for using Transformers in abductive knowledge discovery within a mathematician-machine collaboration? In this work, we introduce a new paradigm in computational enumerative geometry in analyzing the $\psi$-class intersection numbers on the moduli space of curves. By formulating the enumerative problem as a continuous optimization task, we develop a Transformer-based model for computing $\psi$-class intersection numbers based on the underlying quantum Airy structure. For a finite range of genera, our model is capable of regressing intersection numbers that span an extremely wide range of values, from $10^{-45}$ to $10^{45}$. To provide a proper inductive bias for capturing the recursive behavior of intersection numbers, we propose a new activation function, Dynamic Range Activator (DRA). Moreover, given the severe heteroscedasticity of $\psi$-class intersections and the required precision, we quantify the uncertainty of the predictions using Conformal Prediction with a dynamic sliding window that is aware of the number of marked points. Next, we go beyond merely computing intersection numbers and explore the enumerative "world-model" of the Transformers. Through a series of causal inference and correlational interpretability analyses, we demonstrate that Transformers are actually modeling Virasoro constraints in a purely data-driven manner. Additionally, we provide evidence for the comprehension of several values appearing in the large genus asymptotic of $\psi$-class intersection numbers through abductive hypothesis testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信