关于弱有界否定性猜想

Snehajit Misra, Nabanita Ray
{"title":"关于弱有界否定性猜想","authors":"Snehajit Misra, Nabanita Ray","doi":"arxiv-2408.15187","DOIUrl":null,"url":null,"abstract":"In the first part of this article, we give bounds on self-intersections $C^2$\nof integral curves $C$ on blow-ups $Bl_nX$ of surfaces $X$ with the\nanti-cannonical divisor $-K_X$ effective. In the last part, we prove the weak\nbounded negativity for self-intersections $C^2$ of integral curves $C$ in a\nfamily of surfaces $f:Y\\longrightarrow B$ where $B$ is a smooth curve.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Weak bounded negativity conjecture\",\"authors\":\"Snehajit Misra, Nabanita Ray\",\"doi\":\"arxiv-2408.15187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the first part of this article, we give bounds on self-intersections $C^2$\\nof integral curves $C$ on blow-ups $Bl_nX$ of surfaces $X$ with the\\nanti-cannonical divisor $-K_X$ effective. In the last part, we prove the weak\\nbounded negativity for self-intersections $C^2$ of integral curves $C$ in a\\nfamily of surfaces $f:Y\\\\longrightarrow B$ where $B$ is a smooth curve.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文的第一部分,我们给出了在反烛光除数$-K_X$有效的曲面$X$的炸裂$Bl_nX$上积分曲线$C$的自交$C^2$的边界。在最后一部分中,我们证明了在曲面 $f:Y\longrightarrow B$ 的一个族中积分曲线 $C$ 的自交 $C^2$ 的弱界否定性,其中 $B$ 是一条光滑曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Weak bounded negativity conjecture
In the first part of this article, we give bounds on self-intersections $C^2$ of integral curves $C$ on blow-ups $Bl_nX$ of surfaces $X$ with the anti-cannonical divisor $-K_X$ effective. In the last part, we prove the weak bounded negativity for self-intersections $C^2$ of integral curves $C$ in a family of surfaces $f:Y\longrightarrow B$ where $B$ is a smooth curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信