计算正热带品种和正根数下限

Kemal Rose, Máté L. Telek
{"title":"计算正热带品种和正根数下限","authors":"Kemal Rose, Máté L. Telek","doi":"arxiv-2408.15719","DOIUrl":null,"url":null,"abstract":"We present two effective tools for computing the positive tropicalization of\nalgebraic varieties. First, we outline conditions under which the initial ideal\ncan be used to compute the positive tropicalization, offering a real analogue\nto the Fundamental Theorem of Tropical Geometry. Additionally, under certain\ntechnical assumptions, we provide a real version of the Transverse Intersection\nTheorem. Building on these results, we propose an algorithm to compute a\ncombinatorial bound on the number of positive real roots of a parametrized\npolynomial equations system. Furthermore, we discuss how this combinatorial\nbound can be applied to study the number of positive steady states in chemical\nreaction networks.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing positive tropical varieties and lower bounds on the number of positive roots\",\"authors\":\"Kemal Rose, Máté L. Telek\",\"doi\":\"arxiv-2408.15719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two effective tools for computing the positive tropicalization of\\nalgebraic varieties. First, we outline conditions under which the initial ideal\\ncan be used to compute the positive tropicalization, offering a real analogue\\nto the Fundamental Theorem of Tropical Geometry. Additionally, under certain\\ntechnical assumptions, we provide a real version of the Transverse Intersection\\nTheorem. Building on these results, we propose an algorithm to compute a\\ncombinatorial bound on the number of positive real roots of a parametrized\\npolynomial equations system. Furthermore, we discuss how this combinatorial\\nbound can be applied to study the number of positive steady states in chemical\\nreaction networks.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了计算代数变种正热带化的两个有效工具。首先,我们概述了初始理想可用于计算正热带化的条件,提供了热带几何基本定理的实数类比。此外,在某些技术假设下,我们还提供了横交定理的实数版本。在这些结果的基础上,我们提出了一种算法,用于计算参数化多项式方程系统的正实根数的组合约束。此外,我们还讨论了如何将这一组合约束应用于研究化学反应网络中正稳态的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing positive tropical varieties and lower bounds on the number of positive roots
We present two effective tools for computing the positive tropicalization of algebraic varieties. First, we outline conditions under which the initial ideal can be used to compute the positive tropicalization, offering a real analogue to the Fundamental Theorem of Tropical Geometry. Additionally, under certain technical assumptions, we provide a real version of the Transverse Intersection Theorem. Building on these results, we propose an algorithm to compute a combinatorial bound on the number of positive real roots of a parametrized polynomial equations system. Furthermore, we discuss how this combinatorial bound can be applied to study the number of positive steady states in chemical reaction networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信