平面四边形和七边形

Daniele Agostini, Daniel Plaumann, Rainer Sinn, Jannik Lennart Wesner
{"title":"平面四边形和七边形","authors":"Daniele Agostini, Daniel Plaumann, Rainer Sinn, Jannik Lennart Wesner","doi":"arxiv-2408.15759","DOIUrl":null,"url":null,"abstract":"Every polygon with n vertices in the complex projective plane is naturally\nassociated with its adjoint curve of degree n-3. Hence the adjoint of a\nheptagon is a plane quartic. We prove that a general plane quartic is the\nadjoint of exactly 864 distinct complex heptagons. This number had been\nnumerically computed by Kohn et al. We use intersection theory and the Scorza\ncorrespondence for quartics to show that 864 is an upper bound, complemented by\na lower bound obtained through explicit analysis of the famous Klein quartic.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plane quartics and heptagons\",\"authors\":\"Daniele Agostini, Daniel Plaumann, Rainer Sinn, Jannik Lennart Wesner\",\"doi\":\"arxiv-2408.15759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every polygon with n vertices in the complex projective plane is naturally\\nassociated with its adjoint curve of degree n-3. Hence the adjoint of a\\nheptagon is a plane quartic. We prove that a general plane quartic is the\\nadjoint of exactly 864 distinct complex heptagons. This number had been\\nnumerically computed by Kohn et al. We use intersection theory and the Scorza\\ncorrespondence for quartics to show that 864 is an upper bound, complemented by\\na lower bound obtained through explicit analysis of the famous Klein quartic.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在复投影面中,每个有 n 个顶点的多边形都自然地与其 n-3 度的邻接曲线相关联。因此,七边形的邻接曲线就是平面四边形。我们证明,一般的平面四边形正好是 864 个不同的复七边形的邻接曲线。我们利用交集理论和四边形的 Scorzacorrespondence 来证明 864 是一个上界,并通过对著名的克莱因四边形的明确分析得到了一个下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plane quartics and heptagons
Every polygon with n vertices in the complex projective plane is naturally associated with its adjoint curve of degree n-3. Hence the adjoint of a heptagon is a plane quartic. We prove that a general plane quartic is the adjoint of exactly 864 distinct complex heptagons. This number had been numerically computed by Kohn et al. We use intersection theory and the Scorza correspondence for quartics to show that 864 is an upper bound, complemented by a lower bound obtained through explicit analysis of the famous Klein quartic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信