{"title":"函数域无ramifed扩展上的Azumaya代数","authors":"Mohammed Moutand","doi":"arxiv-2408.15893","DOIUrl":null,"url":null,"abstract":"Let $X$ be a smooth variety over a field $K$ with function field $K(X)$.\nUsing the interpretation of the torsion part of the \\'etale cohomology group\n$H_{\\text{\\'et}}^2(K(X), \\mathbb{G}_m)$ in terms of Milnor-Quillen algebraic\n$K$-group $K_2(K(X))$, we prove that under mild conditions on the norm maps\nalong unramified extensions of $K(X)$ over $X$, there exist cohomological\nBrauer classes in $\\operatorname{Br}'(X)$ that are representable by Azumaya\nalgebras on $X$. Theses conditions are almost satisfied in the case of number\nfields, providing then, a partial answer on a question of Grothendieck.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Azumaya algebras over unramifed extensions of function fields\",\"authors\":\"Mohammed Moutand\",\"doi\":\"arxiv-2408.15893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a smooth variety over a field $K$ with function field $K(X)$.\\nUsing the interpretation of the torsion part of the \\\\'etale cohomology group\\n$H_{\\\\text{\\\\'et}}^2(K(X), \\\\mathbb{G}_m)$ in terms of Milnor-Quillen algebraic\\n$K$-group $K_2(K(X))$, we prove that under mild conditions on the norm maps\\nalong unramified extensions of $K(X)$ over $X$, there exist cohomological\\nBrauer classes in $\\\\operatorname{Br}'(X)$ that are representable by Azumaya\\nalgebras on $X$. Theses conditions are almost satisfied in the case of number\\nfields, providing then, a partial answer on a question of Grothendieck.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Azumaya algebras over unramifed extensions of function fields
Let $X$ be a smooth variety over a field $K$ with function field $K(X)$.
Using the interpretation of the torsion part of the \'etale cohomology group
$H_{\text{\'et}}^2(K(X), \mathbb{G}_m)$ in terms of Milnor-Quillen algebraic
$K$-group $K_2(K(X))$, we prove that under mild conditions on the norm maps
along unramified extensions of $K(X)$ over $X$, there exist cohomological
Brauer classes in $\operatorname{Br}'(X)$ that are representable by Azumaya
algebras on $X$. Theses conditions are almost satisfied in the case of number
fields, providing then, a partial answer on a question of Grothendieck.