函数域无ramifed扩展上的Azumaya代数

Mohammed Moutand
{"title":"函数域无ramifed扩展上的Azumaya代数","authors":"Mohammed Moutand","doi":"arxiv-2408.15893","DOIUrl":null,"url":null,"abstract":"Let $X$ be a smooth variety over a field $K$ with function field $K(X)$.\nUsing the interpretation of the torsion part of the \\'etale cohomology group\n$H_{\\text{\\'et}}^2(K(X), \\mathbb{G}_m)$ in terms of Milnor-Quillen algebraic\n$K$-group $K_2(K(X))$, we prove that under mild conditions on the norm maps\nalong unramified extensions of $K(X)$ over $X$, there exist cohomological\nBrauer classes in $\\operatorname{Br}'(X)$ that are representable by Azumaya\nalgebras on $X$. Theses conditions are almost satisfied in the case of number\nfields, providing then, a partial answer on a question of Grothendieck.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Azumaya algebras over unramifed extensions of function fields\",\"authors\":\"Mohammed Moutand\",\"doi\":\"arxiv-2408.15893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a smooth variety over a field $K$ with function field $K(X)$.\\nUsing the interpretation of the torsion part of the \\\\'etale cohomology group\\n$H_{\\\\text{\\\\'et}}^2(K(X), \\\\mathbb{G}_m)$ in terms of Milnor-Quillen algebraic\\n$K$-group $K_2(K(X))$, we prove that under mild conditions on the norm maps\\nalong unramified extensions of $K(X)$ over $X$, there exist cohomological\\nBrauer classes in $\\\\operatorname{Br}'(X)$ that are representable by Azumaya\\nalgebras on $X$. Theses conditions are almost satisfied in the case of number\\nfields, providing then, a partial answer on a question of Grothendieck.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $X$ 是一个有函数域 $K(X)$ 的光滑域。利用米尔诺-奎伦(Milnor-Quillen)代数$K$组$K_2(K(X))$对\'etale同调组$H_{text\{'et}}^2(K(X), \mathbb{G}_m)$的扭转部分的解释、我们证明,在关于 $K(X)$ 在 $X$ 上的非ramified 扩展的规范映射的温和条件下,在 $/operatorname{Br}'(X)$ 中存在可由 $X$ 上的 Azumayaalgebras 表示的同调布劳尔类。在数域的情况下,这些条件几乎都得到了满足,从而部分地回答了格罗登第克的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Azumaya algebras over unramifed extensions of function fields
Let $X$ be a smooth variety over a field $K$ with function field $K(X)$. Using the interpretation of the torsion part of the \'etale cohomology group $H_{\text{\'et}}^2(K(X), \mathbb{G}_m)$ in terms of Milnor-Quillen algebraic $K$-group $K_2(K(X))$, we prove that under mild conditions on the norm maps along unramified extensions of $K(X)$ over $X$, there exist cohomological Brauer classes in $\operatorname{Br}'(X)$ that are representable by Azumaya algebras on $X$. Theses conditions are almost satisfied in the case of number fields, providing then, a partial answer on a question of Grothendieck.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信