平面立方体的各种弯曲

Vladimir L. Popov
{"title":"平面立方体的各种弯曲","authors":"Vladimir L. Popov","doi":"arxiv-2408.16488","DOIUrl":null,"url":null,"abstract":"Let $X$ be the variety of flexes of plane cubics. We prove that (1) $X$ is an\nirreducible rational algebraic variety endowed with an algebraic action of\n${\\rm PSL}_3$; (2) $X$ is ${\\rm PSL}_3$-equivariantly birationally isomorphic\nto a homogeneous fiber space over ${\\rm PSL}_3/K$ with fiber $\\mathbb P^1$ for\nsome subgroup $K$ isomorphic to the binary tetrahedral group ${\\rm\nSL}_2(\\mathbb F_3)$.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The variety of flexes of plane cubics\",\"authors\":\"Vladimir L. Popov\",\"doi\":\"arxiv-2408.16488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be the variety of flexes of plane cubics. We prove that (1) $X$ is an\\nirreducible rational algebraic variety endowed with an algebraic action of\\n${\\\\rm PSL}_3$; (2) $X$ is ${\\\\rm PSL}_3$-equivariantly birationally isomorphic\\nto a homogeneous fiber space over ${\\\\rm PSL}_3/K$ with fiber $\\\\mathbb P^1$ for\\nsome subgroup $K$ isomorphic to the binary tetrahedral group ${\\\\rm\\nSL}_2(\\\\mathbb F_3)$.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 $X$ 是平面立方体的柔面种类。我们证明:(1) $X$ 是禀赋了${\rm PSL}_3$ 的代数作用的可逆有理代数纷;(2) $X$ 是 ${rm PSL}_3$ 上的同质纤维空间,其纤维 ${rm PSL}_3/K$ 与某个子群 $K$ 的二元四面体群 ${rmSL}_2(\mathbb F_3)$ 同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The variety of flexes of plane cubics
Let $X$ be the variety of flexes of plane cubics. We prove that (1) $X$ is an irreducible rational algebraic variety endowed with an algebraic action of ${\rm PSL}_3$; (2) $X$ is ${\rm PSL}_3$-equivariantly birationally isomorphic to a homogeneous fiber space over ${\rm PSL}_3/K$ with fiber $\mathbb P^1$ for some subgroup $K$ isomorphic to the binary tetrahedral group ${\rm SL}_2(\mathbb F_3)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信