{"title":"论 K3 曲面和超卡勒流形的 L 等价性","authors":"Reinder Meinsma","doi":"arxiv-2408.17203","DOIUrl":null,"url":null,"abstract":"This paper explores the relationship between L-equivalence and D-equivalence\nfor K3 surfaces and hyperk\\\"ahler manifolds. Building on Efimov's approach\nusing Hodge theory, we prove that very general L-equivalent K3 surfaces are\nD-equivalent, leveraging the Derived Torelli Theorem for K3 surfaces. Our main\ntechnical contribution is that two distinct lattice structures on an integral,\nirreducible Hodge structure are related by a rational endomorphism of the Hodge\nstructure. We partially extend our results to hyperk\\\"ahler fourfolds and\nmoduli spaces of sheaves on K3 surfaces.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On L-equivalence for K3 surfaces and hyperkähler manifolds\",\"authors\":\"Reinder Meinsma\",\"doi\":\"arxiv-2408.17203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the relationship between L-equivalence and D-equivalence\\nfor K3 surfaces and hyperk\\\\\\\"ahler manifolds. Building on Efimov's approach\\nusing Hodge theory, we prove that very general L-equivalent K3 surfaces are\\nD-equivalent, leveraging the Derived Torelli Theorem for K3 surfaces. Our main\\ntechnical contribution is that two distinct lattice structures on an integral,\\nirreducible Hodge structure are related by a rational endomorphism of the Hodge\\nstructure. We partially extend our results to hyperk\\\\\\\"ahler fourfolds and\\nmoduli spaces of sheaves on K3 surfaces.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文探讨了K3曲面和超(hyperk\"ahler)流形的L等价和D等价之间的关系。在埃菲莫夫利用霍奇理论的方法基础上,我们利用 K3 曲面的衍生托雷利定理证明了非常一般的 L 等价 K3 曲面是 D 等价的。我们的主要技术贡献是,通过霍奇结构的有理内定形,在不可还原的整体霍奇结构上的两个不同晶格结构是相关的。我们将我们的结果部分地扩展到超(hyperk\"ahler)四叠加和 K3 曲面上的模空间。
On L-equivalence for K3 surfaces and hyperkähler manifolds
This paper explores the relationship between L-equivalence and D-equivalence
for K3 surfaces and hyperk\"ahler manifolds. Building on Efimov's approach
using Hodge theory, we prove that very general L-equivalent K3 surfaces are
D-equivalent, leveraging the Derived Torelli Theorem for K3 surfaces. Our main
technical contribution is that two distinct lattice structures on an integral,
irreducible Hodge structure are related by a rational endomorphism of the Hodge
structure. We partially extend our results to hyperk\"ahler fourfolds and
moduli spaces of sheaves on K3 surfaces.