论 K3 曲面和超卡勒流形的 L 等价性

Reinder Meinsma
{"title":"论 K3 曲面和超卡勒流形的 L 等价性","authors":"Reinder Meinsma","doi":"arxiv-2408.17203","DOIUrl":null,"url":null,"abstract":"This paper explores the relationship between L-equivalence and D-equivalence\nfor K3 surfaces and hyperk\\\"ahler manifolds. Building on Efimov's approach\nusing Hodge theory, we prove that very general L-equivalent K3 surfaces are\nD-equivalent, leveraging the Derived Torelli Theorem for K3 surfaces. Our main\ntechnical contribution is that two distinct lattice structures on an integral,\nirreducible Hodge structure are related by a rational endomorphism of the Hodge\nstructure. We partially extend our results to hyperk\\\"ahler fourfolds and\nmoduli spaces of sheaves on K3 surfaces.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On L-equivalence for K3 surfaces and hyperkähler manifolds\",\"authors\":\"Reinder Meinsma\",\"doi\":\"arxiv-2408.17203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the relationship between L-equivalence and D-equivalence\\nfor K3 surfaces and hyperk\\\\\\\"ahler manifolds. Building on Efimov's approach\\nusing Hodge theory, we prove that very general L-equivalent K3 surfaces are\\nD-equivalent, leveraging the Derived Torelli Theorem for K3 surfaces. Our main\\ntechnical contribution is that two distinct lattice structures on an integral,\\nirreducible Hodge structure are related by a rational endomorphism of the Hodge\\nstructure. We partially extend our results to hyperk\\\\\\\"ahler fourfolds and\\nmoduli spaces of sheaves on K3 surfaces.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了K3曲面和超(hyperk\"ahler)流形的L等价和D等价之间的关系。在埃菲莫夫利用霍奇理论的方法基础上,我们利用 K3 曲面的衍生托雷利定理证明了非常一般的 L 等价 K3 曲面是 D 等价的。我们的主要技术贡献是,通过霍奇结构的有理内定形,在不可还原的整体霍奇结构上的两个不同晶格结构是相关的。我们将我们的结果部分地扩展到超(hyperk\"ahler)四叠加和 K3 曲面上的模空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On L-equivalence for K3 surfaces and hyperkähler manifolds
This paper explores the relationship between L-equivalence and D-equivalence for K3 surfaces and hyperk\"ahler manifolds. Building on Efimov's approach using Hodge theory, we prove that very general L-equivalent K3 surfaces are D-equivalent, leveraging the Derived Torelli Theorem for K3 surfaces. Our main technical contribution is that two distinct lattice structures on an integral, irreducible Hodge structure are related by a rational endomorphism of the Hodge structure. We partially extend our results to hyperk\"ahler fourfolds and moduli spaces of sheaves on K3 surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信