无质量粒子的运动学变量

Smita Rajan, Svala Sverrisdóttir, Bernd Sturmfels
{"title":"无质量粒子的运动学变量","authors":"Smita Rajan, Svala Sverrisdóttir, Bernd Sturmfels","doi":"arxiv-2408.16711","DOIUrl":null,"url":null,"abstract":"We study algebraic varieties that encode the kinematic data for $n$ massless\nparticles in $d$-dimensional spacetime subject to momentum conservation. Their\ncoordinates are spinor brackets, which we derive from the Clifford algebra\nassociated to the Lorentz group. This was proposed for $d=5$ in the recent\nphysics literature. Our kinematic varieties are given by polynomial constraints\non tensors with both symmetric and skew symmetric slices.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematic Varieties for Massless Particles\",\"authors\":\"Smita Rajan, Svala Sverrisdóttir, Bernd Sturmfels\",\"doi\":\"arxiv-2408.16711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study algebraic varieties that encode the kinematic data for $n$ massless\\nparticles in $d$-dimensional spacetime subject to momentum conservation. Their\\ncoordinates are spinor brackets, which we derive from the Clifford algebra\\nassociated to the Lorentz group. This was proposed for $d=5$ in the recent\\nphysics literature. Our kinematic varieties are given by polynomial constraints\\non tensors with both symmetric and skew symmetric slices.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究在动量守恒条件下,编码 $d$ 维时空中 $n$ 无质量粒子运动数据的代数变量。它们的坐标是旋子括号,我们从与洛伦兹群相关的克利福德代数中推导出旋子括号。这是在最近的物理学文献中针对 $d=5$ 提出的。我们的运动学变量是由具有对称和倾斜对称切片的多项式张量约束给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinematic Varieties for Massless Particles
We study algebraic varieties that encode the kinematic data for $n$ massless particles in $d$-dimensional spacetime subject to momentum conservation. Their coordinates are spinor brackets, which we derive from the Clifford algebra associated to the Lorentz group. This was proposed for $d=5$ in the recent physics literature. Our kinematic varieties are given by polynomial constraints on tensors with both symmetric and skew symmetric slices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信