论整体 D 模块的傅立叶变换的无穷大单色性

Kazuki Kudomi, Kiyoshi Takeuchi
{"title":"论整体 D 模块的傅立叶变换的无穷大单色性","authors":"Kazuki Kudomi, Kiyoshi Takeuchi","doi":"arxiv-2409.00423","DOIUrl":null,"url":null,"abstract":"Based on the recent progress in the irregular Riemann-Hilbert correspondence,\nwe study the monodromies at infinity of the holomorphic solutions of Fourier\ntransforms of holonomic D-modules in some situations. Formulas for their\neigenvalues are obtained by applying the theory of monodromy zeta functions to\nour previous results on the enhanced solution complexes of the Fourier\ntransforms. In particular, in dimension one we thus find a reciprocity law\nbetween the monodromies at infinity of holonomic D-modules and their Fourier\ntransforms.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the monodromies at infinity of Fourier transforms of holonomic D-modules\",\"authors\":\"Kazuki Kudomi, Kiyoshi Takeuchi\",\"doi\":\"arxiv-2409.00423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the recent progress in the irregular Riemann-Hilbert correspondence,\\nwe study the monodromies at infinity of the holomorphic solutions of Fourier\\ntransforms of holonomic D-modules in some situations. Formulas for their\\neigenvalues are obtained by applying the theory of monodromy zeta functions to\\nour previous results on the enhanced solution complexes of the Fourier\\ntransforms. In particular, in dimension one we thus find a reciprocity law\\nbetween the monodromies at infinity of holonomic D-modules and their Fourier\\ntransforms.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于不规则黎曼-希尔伯特对应关系的最新进展,我们研究了在某些情况下整体性 D 模块的傅里叶变换全形解的无穷大处单色性。通过将单旋转zeta函数理论应用于我们之前关于傅里叶变换的增强解复数的结果,我们得到了特征值的公式。特别是,在维数一中,我们发现了整体 D 模块的无穷大处单色性与它们的傅里叶变换之间的互易律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the monodromies at infinity of Fourier transforms of holonomic D-modules
Based on the recent progress in the irregular Riemann-Hilbert correspondence, we study the monodromies at infinity of the holomorphic solutions of Fourier transforms of holonomic D-modules in some situations. Formulas for their eigenvalues are obtained by applying the theory of monodromy zeta functions to our previous results on the enhanced solution complexes of the Fourier transforms. In particular, in dimension one we thus find a reciprocity law between the monodromies at infinity of holonomic D-modules and their Fourier transforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信