闪电自我关注的几何学:可识别性和维度

Nathan W. Henry, Giovanni Luca Marchetti, Kathlén Kohn
{"title":"闪电自我关注的几何学:可识别性和维度","authors":"Nathan W. Henry, Giovanni Luca Marchetti, Kathlén Kohn","doi":"arxiv-2408.17221","DOIUrl":null,"url":null,"abstract":"We consider function spaces defined by self-attention networks without\nnormalization, and theoretically analyze their geometry. Since these networks\nare polynomial, we rely on tools from algebraic geometry. In particular, we\nstudy the identifiability of deep attention by providing a description of the\ngeneric fibers of the parametrization for an arbitrary number of layers and, as\na consequence, compute the dimension of the function space. Additionally, for a\nsingle-layer model, we characterize the singular and boundary points. Finally,\nwe formulate a conjectural extension of our results to normalized\nself-attention networks, prove it for a single layer, and numerically verify it\nin the deep case.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry of Lightning Self-Attention: Identifiability and Dimension\",\"authors\":\"Nathan W. Henry, Giovanni Luca Marchetti, Kathlén Kohn\",\"doi\":\"arxiv-2408.17221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider function spaces defined by self-attention networks without\\nnormalization, and theoretically analyze their geometry. Since these networks\\nare polynomial, we rely on tools from algebraic geometry. In particular, we\\nstudy the identifiability of deep attention by providing a description of the\\ngeneric fibers of the parametrization for an arbitrary number of layers and, as\\na consequence, compute the dimension of the function space. Additionally, for a\\nsingle-layer model, we characterize the singular and boundary points. Finally,\\nwe formulate a conjectural extension of our results to normalized\\nself-attention networks, prove it for a single layer, and numerically verify it\\nin the deep case.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了由无规范化的自注意网络定义的函数空间,并从理论上分析了它们的几何形状。由于这些网络是多项式的,我们依赖于代数几何的工具。特别是,我们通过对任意层数的参数化的一般纤维进行描述,研究了深度注意的可识别性,并由此计算了函数空间的维度。此外,对于单层模型,我们描述了奇异点和边界点的特征。最后,我们提出了将我们的结果扩展到归一化自我注意网络的猜想,证明了单层网络的结果,并在深层网络中进行了数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry of Lightning Self-Attention: Identifiability and Dimension
We consider function spaces defined by self-attention networks without normalization, and theoretically analyze their geometry. Since these networks are polynomial, we rely on tools from algebraic geometry. In particular, we study the identifiability of deep attention by providing a description of the generic fibers of the parametrization for an arbitrary number of layers and, as a consequence, compute the dimension of the function space. Additionally, for a single-layer model, we characterize the singular and boundary points. Finally, we formulate a conjectural extension of our results to normalized self-attention networks, prove it for a single layer, and numerically verify it in the deep case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信