对偶边界复数的积分同调是动机性的

Tao Su
{"title":"对偶边界复数的积分同调是动机性的","authors":"Tao Su","doi":"arxiv-2408.17301","DOIUrl":null,"url":null,"abstract":"In this note, we give a motivic characterization of the integral cohomology\nof dual boundary complexes of smooth quasi-projective complex algebraic\nvarieties. As a corollary, the dual boundary complex of any stably affine space\n(of positive dimension) is contractible. In a separate paper [Su23], this\ncorollary has been used by the author in his proof of the weak geometric P=W\nconjecture for very generic $GL_n(\\mathbb{C})$-character varieties over any\npunctured Riemann surfaces.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral cohomology of dual boundary complexes is motivic\",\"authors\":\"Tao Su\",\"doi\":\"arxiv-2408.17301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we give a motivic characterization of the integral cohomology\\nof dual boundary complexes of smooth quasi-projective complex algebraic\\nvarieties. As a corollary, the dual boundary complex of any stably affine space\\n(of positive dimension) is contractible. In a separate paper [Su23], this\\ncorollary has been used by the author in his proof of the weak geometric P=W\\nconjecture for very generic $GL_n(\\\\mathbb{C})$-character varieties over any\\npunctured Riemann surfaces.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们给出了光滑准投影复代数变量的对偶边界复数的积分同调的动机特征。作为推论,任何稳定仿射空间(正维度)的对偶边界复数都是可收缩的。在另一篇论文[Su23]中,作者利用这个推论证明了在任何穿透黎曼曲面上的非常通用的 $GL_n(\mathbb{C})$ 特征变体的弱几何 P=W 猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral cohomology of dual boundary complexes is motivic
In this note, we give a motivic characterization of the integral cohomology of dual boundary complexes of smooth quasi-projective complex algebraic varieties. As a corollary, the dual boundary complex of any stably affine space (of positive dimension) is contractible. In a separate paper [Su23], this corollary has been used by the author in his proof of the weak geometric P=W conjecture for very generic $GL_n(\mathbb{C})$-character varieties over any punctured Riemann surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信