二次元上均匀束的分裂

Xinyi Fang, Duo Li, Yanjie Li
{"title":"二次元上均匀束的分裂","authors":"Xinyi Fang, Duo Li, Yanjie Li","doi":"arxiv-2409.02365","DOIUrl":null,"url":null,"abstract":"We show that there exist only constant morphisms from\n$\\mathbb{Q}^{2n+1}(n\\geq 1)$ to $\\mathbb{G}(l,2n+1)$ if $l$ is even $(0<l<2n)$\nand $(l,2n+1)$ is not $ (2,5)$. As an application, we prove on\n$\\mathbb{Q}^{2m+1}$ and $\\mathbb{Q}^{2m+2}(m\\geq 3)$, any uniform bundle of\nrank $2m$ splits.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Splitting of uniform bundles on quadrics\",\"authors\":\"Xinyi Fang, Duo Li, Yanjie Li\",\"doi\":\"arxiv-2409.02365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that there exist only constant morphisms from\\n$\\\\mathbb{Q}^{2n+1}(n\\\\geq 1)$ to $\\\\mathbb{G}(l,2n+1)$ if $l$ is even $(0<l<2n)$\\nand $(l,2n+1)$ is not $ (2,5)$. As an application, we prove on\\n$\\\\mathbb{Q}^{2m+1}$ and $\\\\mathbb{Q}^{2m+2}(m\\\\geq 3)$, any uniform bundle of\\nrank $2m$ splits.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果 $l$ 是偶数 $(0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Splitting of uniform bundles on quadrics
We show that there exist only constant morphisms from $\mathbb{Q}^{2n+1}(n\geq 1)$ to $\mathbb{G}(l,2n+1)$ if $l$ is even $(0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信