对数 Calabi-Yau 三折的互补有界性

Guodu Chen, Jingjun Han, Qingyuan Xue
{"title":"对数 Calabi-Yau 三折的互补有界性","authors":"Guodu Chen, Jingjun Han, Qingyuan Xue","doi":"arxiv-2409.01310","DOIUrl":null,"url":null,"abstract":"In this paper, we study the theory of complements, introduced by Shokurov,\nfor Calabi-Yau type varieties with the coefficient set $[0,1]$. We show that\nthere exists a finite set of positive integers $\\mathcal{N}$, such that if a\nthreefold pair $(X/Z\\ni z,B)$ has an $\\mathbb{R}$-complement which is klt over\na neighborhood of $z$, then it has an $n$-complement for some\n$n\\in\\mathcal{N}$. We also show the boundedness of complements for\n$\\mathbb{R}$-complementary surface pairs.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness of complements for log Calabi-Yau threefolds\",\"authors\":\"Guodu Chen, Jingjun Han, Qingyuan Xue\",\"doi\":\"arxiv-2409.01310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the theory of complements, introduced by Shokurov,\\nfor Calabi-Yau type varieties with the coefficient set $[0,1]$. We show that\\nthere exists a finite set of positive integers $\\\\mathcal{N}$, such that if a\\nthreefold pair $(X/Z\\\\ni z,B)$ has an $\\\\mathbb{R}$-complement which is klt over\\na neighborhood of $z$, then it has an $n$-complement for some\\n$n\\\\in\\\\mathcal{N}$. We also show the boundedness of complements for\\n$\\\\mathbb{R}$-complementary surface pairs.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了肖库罗夫(Shokurov)为系数集$[0,1]$的卡拉比-尤(Calabi-Yau)型变体引入的补集理论。我们证明了存在一个有限的正整数集 $\mathcal{N}$,使得如果三折对 $(X/Z\ni z,B)$ 有一个 $\mathbb{R}$ 的补集,而这个补集在 $z$ 的邻域上是 klt,那么对于某个 $n\in\mathcal{N}$,它就有一个 $n$ 的补集。我们还证明了$mathbb{R}$互补曲面对的互补有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness of complements for log Calabi-Yau threefolds
In this paper, we study the theory of complements, introduced by Shokurov, for Calabi-Yau type varieties with the coefficient set $[0,1]$. We show that there exists a finite set of positive integers $\mathcal{N}$, such that if a threefold pair $(X/Z\ni z,B)$ has an $\mathbb{R}$-complement which is klt over a neighborhood of $z$, then it has an $n$-complement for some $n\in\mathcal{N}$. We also show the boundedness of complements for $\mathbb{R}$-complementary surface pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信