同指数 3 法诺变体上的有理曲线

Eric Jovinelly, Fumiya Okamura
{"title":"同指数 3 法诺变体上的有理曲线","authors":"Eric Jovinelly, Fumiya Okamura","doi":"arxiv-2409.00834","DOIUrl":null,"url":null,"abstract":"We describe the moduli space of rational curves on smooth Fano varieties of\ncoindex 3. For varieties of dimension 5 or greater, we prove the moduli space\nhas a single irreducible component for each effective numerical class of\ncurves. For varieties of dimension 4, we describe families of rational curves\nin terms of Fujita's $a$-invariant. Our results verify Lehmann and Tanimoto's\nGeometric Manin's Conjecture for all smooth coindex 3 Fano varieties over the\ncomplex numbers.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Curves on Coindex 3 Fano Varieties\",\"authors\":\"Eric Jovinelly, Fumiya Okamura\",\"doi\":\"arxiv-2409.00834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the moduli space of rational curves on smooth Fano varieties of\\ncoindex 3. For varieties of dimension 5 or greater, we prove the moduli space\\nhas a single irreducible component for each effective numerical class of\\ncurves. For varieties of dimension 4, we describe families of rational curves\\nin terms of Fujita's $a$-invariant. Our results verify Lehmann and Tanimoto's\\nGeometric Manin's Conjecture for all smooth coindex 3 Fano varieties over the\\ncomplex numbers.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了指数为 3 的光滑法诺变种上有理曲线的模空间。对于维数为 5 或更大的有理曲线,我们证明了模空间对于每一个有效数类曲线都有一个不可还原的分量。对于维数为 4 的有理曲线,我们用藤田的 $a$ 不变式描述了有理曲线族。我们的结果验证了莱曼和谷本的几何马宁猜想,即所有复数上的光滑同指数 3 法诺变种的几何马宁猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational Curves on Coindex 3 Fano Varieties
We describe the moduli space of rational curves on smooth Fano varieties of coindex 3. For varieties of dimension 5 or greater, we prove the moduli space has a single irreducible component for each effective numerical class of curves. For varieties of dimension 4, we describe families of rational curves in terms of Fujita's $a$-invariant. Our results verify Lehmann and Tanimoto's Geometric Manin's Conjecture for all smooth coindex 3 Fano varieties over the complex numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信