Toric Varieties 的局部琐碎变形

Nathan Ilten, Sharon Robins
{"title":"Toric Varieties 的局部琐碎变形","authors":"Nathan Ilten, Sharon Robins","doi":"arxiv-2409.02824","DOIUrl":null,"url":null,"abstract":"We study locally trivial deformations of toric varieties from a combinatorial\npoint of view. For any fan $\\Sigma$, we construct a deformation functor\n$\\mathrm{Def}_\\Sigma$ by considering \\v{C}ech zero-cochains on certain\nsimplicial complexes. We show that under appropriate hypotheses,\n$\\mathrm{Def}_\\Sigma$ is isomorphic to $\\mathrm{Def}'_{X_\\Sigma}$, the functor\nof locally trivial deformations for the toric variety $X_\\Sigma$ associated to\n$\\Sigma$. In particular, for any complete toric variety $X$ that is smooth in\ncodimension $2$ and $\\mathbb{Q}$-factorial in codimension $3$, there exists a\nfan $\\Sigma$ such that $\\mathrm{Def}_\\Sigma$ is isomorphic to $\\mathrm{Def}_X$,\nthe functor of deformations of $X$. We apply these results to give a new\ncriterion for a smooth complete toric variety to have unobstructed\ndeformations, and to compute formulas for higher order obstructions,\ngeneralizing a formula of Ilten and Turo for the cup product. We use the\nfunctor $\\mathrm{Def}_\\Sigma$ to explicitly compute the deformation spaces for\na number of toric varieties, and provide examples exhibiting previously\nunobserved phenomena. In particular, we classify exactly which toric threefolds\narising as iterated $\\mathbb{P}^1$-bundles have unobstructed deformation space.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locally Trivial Deformations of Toric Varieties\",\"authors\":\"Nathan Ilten, Sharon Robins\",\"doi\":\"arxiv-2409.02824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study locally trivial deformations of toric varieties from a combinatorial\\npoint of view. For any fan $\\\\Sigma$, we construct a deformation functor\\n$\\\\mathrm{Def}_\\\\Sigma$ by considering \\\\v{C}ech zero-cochains on certain\\nsimplicial complexes. We show that under appropriate hypotheses,\\n$\\\\mathrm{Def}_\\\\Sigma$ is isomorphic to $\\\\mathrm{Def}'_{X_\\\\Sigma}$, the functor\\nof locally trivial deformations for the toric variety $X_\\\\Sigma$ associated to\\n$\\\\Sigma$. In particular, for any complete toric variety $X$ that is smooth in\\ncodimension $2$ and $\\\\mathbb{Q}$-factorial in codimension $3$, there exists a\\nfan $\\\\Sigma$ such that $\\\\mathrm{Def}_\\\\Sigma$ is isomorphic to $\\\\mathrm{Def}_X$,\\nthe functor of deformations of $X$. We apply these results to give a new\\ncriterion for a smooth complete toric variety to have unobstructed\\ndeformations, and to compute formulas for higher order obstructions,\\ngeneralizing a formula of Ilten and Turo for the cup product. We use the\\nfunctor $\\\\mathrm{Def}_\\\\Sigma$ to explicitly compute the deformation spaces for\\na number of toric varieties, and provide examples exhibiting previously\\nunobserved phenomena. In particular, we classify exactly which toric threefolds\\narising as iterated $\\\\mathbb{P}^1$-bundles have unobstructed deformation space.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从组合的角度研究环状变体的局部琐碎变形。对于任意扇$\Sigma$,我们通过考虑某些简单复数上的\v{C}ech零链,构造了一个变形函子$\mathrm{Def}_\Sigma$。我们证明,在适当的假设条件下,$\mathrm{Def}_\Sigma$与$\mathrm{Def}'_{X_\Sigma}$--与$\Sigma$相关的环综$X_\Sigma$的局部琐碎变形函子--是同构的。特别是,对于任何在标度为 2 美元的范围内光滑、在标度为 3 美元的范围内具有 $\mathbb{Q}$ 因式的完整环综 $X$,都存在一个变量 $\Sigma$,使得 $\mathrm{Def}_\Sigma$ 与 $\mathrm{Def}_X$(即 $X$ 的变形函子)同构。我们应用这些结果给出了一个新的标准,即光滑的完整环状变种必须具有无阻塞变形,并计算了高阶阻塞的公式,推广了伊尔腾和图罗关于杯积的公式。我们使用矢量 $\mathrm{Def}_\Sigma$ 明确地计算了许多环状变的变形空间,并举例说明了以前未观察到的现象。特别是,我们准确地分类了哪些以迭代$\mathbb{P}^1$束形式出现的环状三褶具有无遮挡的变形空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locally Trivial Deformations of Toric Varieties
We study locally trivial deformations of toric varieties from a combinatorial point of view. For any fan $\Sigma$, we construct a deformation functor $\mathrm{Def}_\Sigma$ by considering \v{C}ech zero-cochains on certain simplicial complexes. We show that under appropriate hypotheses, $\mathrm{Def}_\Sigma$ is isomorphic to $\mathrm{Def}'_{X_\Sigma}$, the functor of locally trivial deformations for the toric variety $X_\Sigma$ associated to $\Sigma$. In particular, for any complete toric variety $X$ that is smooth in codimension $2$ and $\mathbb{Q}$-factorial in codimension $3$, there exists a fan $\Sigma$ such that $\mathrm{Def}_\Sigma$ is isomorphic to $\mathrm{Def}_X$, the functor of deformations of $X$. We apply these results to give a new criterion for a smooth complete toric variety to have unobstructed deformations, and to compute formulas for higher order obstructions, generalizing a formula of Ilten and Turo for the cup product. We use the functor $\mathrm{Def}_\Sigma$ to explicitly compute the deformation spaces for a number of toric varieties, and provide examples exhibiting previously unobserved phenomena. In particular, we classify exactly which toric threefolds arising as iterated $\mathbb{P}^1$-bundles have unobstructed deformation space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信