法诺变体族的遍历性

Lena Ji, Joaquín Moraga
{"title":"法诺变体族的遍历性","authors":"Lena Ji, Joaquín Moraga","doi":"arxiv-2409.03564","DOIUrl":null,"url":null,"abstract":"Rationality is not a constructible property in families. In this article, we\nconsider stronger notions of rationality and study their behavior in families\nof Fano varieties. We first show that being toric is a constructible property\nin families of Fano varieties. The second main result of this article concerns\nan intermediate notion that lies between toric and rational varieties, namely\ncluster type varieties. A cluster type $\\mathbb Q$-factorial Fano variety\ncontains an open dense algebraic torus, but the variety does not need to be\nendowed with a torus action. We prove that, in families of $\\mathbb\nQ$-factorial terminal Fano varieties, being of cluster type is a constructible\ncondition. As a consequence, we show that there are finitely many smooth\nfamilies parametrizing $n$-dimensional smooth cluster type Fano varieties.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toricity in families of Fano varieties\",\"authors\":\"Lena Ji, Joaquín Moraga\",\"doi\":\"arxiv-2409.03564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rationality is not a constructible property in families. In this article, we\\nconsider stronger notions of rationality and study their behavior in families\\nof Fano varieties. We first show that being toric is a constructible property\\nin families of Fano varieties. The second main result of this article concerns\\nan intermediate notion that lies between toric and rational varieties, namely\\ncluster type varieties. A cluster type $\\\\mathbb Q$-factorial Fano variety\\ncontains an open dense algebraic torus, but the variety does not need to be\\nendowed with a torus action. We prove that, in families of $\\\\mathbb\\nQ$-factorial terminal Fano varieties, being of cluster type is a constructible\\ncondition. As a consequence, we show that there are finitely many smooth\\nfamilies parametrizing $n$-dimensional smooth cluster type Fano varieties.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

理性不是族中可构造的属性。在本文中,我们将考虑更强的合理性概念,并研究它们在法诺变项族中的行为。我们首先证明,在法诺变项族中,环性是一个可构造的性质。本文的第二个主要结果涉及介于环状变项和有理变项之间的一个中间概念,即簇型变项。簇型 $\mathbb Q$ 因式法诺变式包含一个开放的致密代数环,但该变式不需要具有环作用。我们证明,在$\mathbbQ$因子末端法诺变的家族中,簇类型是一个可构造的条件。因此,我们证明了有有限多个光滑族可以参数化 $n$ 维光滑簇型法诺变项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toricity in families of Fano varieties
Rationality is not a constructible property in families. In this article, we consider stronger notions of rationality and study their behavior in families of Fano varieties. We first show that being toric is a constructible property in families of Fano varieties. The second main result of this article concerns an intermediate notion that lies between toric and rational varieties, namely cluster type varieties. A cluster type $\mathbb Q$-factorial Fano variety contains an open dense algebraic torus, but the variety does not need to be endowed with a torus action. We prove that, in families of $\mathbb Q$-factorial terminal Fano varieties, being of cluster type is a constructible condition. As a consequence, we show that there are finitely many smooth families parametrizing $n$-dimensional smooth cluster type Fano varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信