{"title":"基于拉盖尔小波的新方法,用于求解具有弱奇异对数核的弗雷德霍姆积分方程","authors":"Srikanta Behera, Santanu Saha Ray","doi":"10.1002/mma.10405","DOIUrl":null,"url":null,"abstract":"<p>In this study, a wavelet-based collocation scheme has been introduced for solving the linear and nonlinear Fredholm integral equations as well as the system of linear Fredholm integral equations with weakly singular logarithmic kernel. Initially, Laguerre wavelets have been constructed by dilation and translation of Laguerre polynomials. For the numerical solution of the Fredholm integral equations, all the functions have been approximated with respect to the Laguerre wavelets. Then, the proposed linear and nonlinear Fredholm integral equations reduce to systems of linear and nonlinear algebraic equations by utilizing the function approximations. Furthermore, the error estimation and the convergence analysis of the presented method have been discussed. Moreover, the numerical results of the several experiments have also been presented in both graphical and tabular form to describe the accuracy and efficiency of the approached method, and also, to determine the validity of the presented scheme, the approximate solutions and absolute error values are compared with the results obtained by other existing approaches.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 2","pages":"1701-1724"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new Laguerre wavelets-based method for solving Fredholm integral equations with weakly singular logarithmic kernel\",\"authors\":\"Srikanta Behera, Santanu Saha Ray\",\"doi\":\"10.1002/mma.10405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, a wavelet-based collocation scheme has been introduced for solving the linear and nonlinear Fredholm integral equations as well as the system of linear Fredholm integral equations with weakly singular logarithmic kernel. Initially, Laguerre wavelets have been constructed by dilation and translation of Laguerre polynomials. For the numerical solution of the Fredholm integral equations, all the functions have been approximated with respect to the Laguerre wavelets. Then, the proposed linear and nonlinear Fredholm integral equations reduce to systems of linear and nonlinear algebraic equations by utilizing the function approximations. Furthermore, the error estimation and the convergence analysis of the presented method have been discussed. Moreover, the numerical results of the several experiments have also been presented in both graphical and tabular form to describe the accuracy and efficiency of the approached method, and also, to determine the validity of the presented scheme, the approximate solutions and absolute error values are compared with the results obtained by other existing approaches.</p>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 2\",\"pages\":\"1701-1724\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10405\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10405","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A new Laguerre wavelets-based method for solving Fredholm integral equations with weakly singular logarithmic kernel
In this study, a wavelet-based collocation scheme has been introduced for solving the linear and nonlinear Fredholm integral equations as well as the system of linear Fredholm integral equations with weakly singular logarithmic kernel. Initially, Laguerre wavelets have been constructed by dilation and translation of Laguerre polynomials. For the numerical solution of the Fredholm integral equations, all the functions have been approximated with respect to the Laguerre wavelets. Then, the proposed linear and nonlinear Fredholm integral equations reduce to systems of linear and nonlinear algebraic equations by utilizing the function approximations. Furthermore, the error estimation and the convergence analysis of the presented method have been discussed. Moreover, the numerical results of the several experiments have also been presented in both graphical and tabular form to describe the accuracy and efficiency of the approached method, and also, to determine the validity of the presented scheme, the approximate solutions and absolute error values are compared with the results obtained by other existing approaches.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.