{"title":"双谐波特征值问题的混合非连续伽勒金方法的多网格离散化","authors":"Jinhua Feng, Shixi Wang, Hai Bi, Yidu Yang","doi":"10.1002/mma.10455","DOIUrl":null,"url":null,"abstract":"<p>The Ciarlet–Raviart mixed method is popular for the biharmonic equations/eigenvalue problem. In this paper, we propose a multigrid discretization based on the shifted-inverse iteration of Ciarlet–Raviart mixed discontinuous Galerkin method for the biharmonic eigenvalue problem. We prove the a priori error estimates of the approximate eigenpairs. We also give the a posteriori error estimates of the approximate eigenvalues and prove the reliability of the estimator and implement adaptive computation. Numerical experiments show that our method can efficiently compute biharmonic eigenvalues.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 2","pages":"2635-2654"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The multigrid discretization of mixed discontinuous Galerkin method for the biharmonic eigenvalue problem\",\"authors\":\"Jinhua Feng, Shixi Wang, Hai Bi, Yidu Yang\",\"doi\":\"10.1002/mma.10455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Ciarlet–Raviart mixed method is popular for the biharmonic equations/eigenvalue problem. In this paper, we propose a multigrid discretization based on the shifted-inverse iteration of Ciarlet–Raviart mixed discontinuous Galerkin method for the biharmonic eigenvalue problem. We prove the a priori error estimates of the approximate eigenpairs. We also give the a posteriori error estimates of the approximate eigenvalues and prove the reliability of the estimator and implement adaptive computation. Numerical experiments show that our method can efficiently compute biharmonic eigenvalues.</p>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 2\",\"pages\":\"2635-2654\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10455\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10455","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The multigrid discretization of mixed discontinuous Galerkin method for the biharmonic eigenvalue problem
The Ciarlet–Raviart mixed method is popular for the biharmonic equations/eigenvalue problem. In this paper, we propose a multigrid discretization based on the shifted-inverse iteration of Ciarlet–Raviart mixed discontinuous Galerkin method for the biharmonic eigenvalue problem. We prove the a priori error estimates of the approximate eigenpairs. We also give the a posteriori error estimates of the approximate eigenvalues and prove the reliability of the estimator and implement adaptive computation. Numerical experiments show that our method can efficiently compute biharmonic eigenvalues.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.