{"title":"随机乙型肝炎病毒模型的消亡和静态分布","authors":"C. Gokila, M. Sambath","doi":"10.1002/mma.10467","DOIUrl":null,"url":null,"abstract":"In this article, we develop a Hepatitis B virus model with six compartments affected by environmental fluctuations since the Hepatitis B virus produces serious liver infections in the human body, putting many people at high risk. The existence of a global positive solution is shown to prove the positivity of solutions. We demonstrate that the system experiences the extinction property for a specific parametric restriction. Besides that, we obtain the stochastic stability region for the proposed model through the stationary distribution. To determine the appearance and disappearance of infection in the population, we find and analyze the reproduction ratio . In addition, we have verified the condition of the reproduction ratio through the graphical simulations.","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"3 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extinction and stationary distribution of stochastic hepatitis B virus model\",\"authors\":\"C. Gokila, M. Sambath\",\"doi\":\"10.1002/mma.10467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we develop a Hepatitis B virus model with six compartments affected by environmental fluctuations since the Hepatitis B virus produces serious liver infections in the human body, putting many people at high risk. The existence of a global positive solution is shown to prove the positivity of solutions. We demonstrate that the system experiences the extinction property for a specific parametric restriction. Besides that, we obtain the stochastic stability region for the proposed model through the stationary distribution. To determine the appearance and disappearance of infection in the population, we find and analyze the reproduction ratio . In addition, we have verified the condition of the reproduction ratio through the graphical simulations.\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10467\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10467","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Extinction and stationary distribution of stochastic hepatitis B virus model
In this article, we develop a Hepatitis B virus model with six compartments affected by environmental fluctuations since the Hepatitis B virus produces serious liver infections in the human body, putting many people at high risk. The existence of a global positive solution is shown to prove the positivity of solutions. We demonstrate that the system experiences the extinction property for a specific parametric restriction. Besides that, we obtain the stochastic stability region for the proposed model through the stationary distribution. To determine the appearance and disappearance of infection in the population, we find and analyze the reproduction ratio . In addition, we have verified the condition of the reproduction ratio through the graphical simulations.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.