通过 M 矩阵实现一类基于四元数值忆阻器的时变延迟神经网络的指数稳定性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shengye Wang, Yanchao Shi, Jun Guo
{"title":"通过 M 矩阵实现一类基于四元数值忆阻器的时变延迟神经网络的指数稳定性","authors":"Shengye Wang, Yanchao Shi, Jun Guo","doi":"10.1002/mma.10486","DOIUrl":null,"url":null,"abstract":"This paper investigates the problems of exponential stability for a class of quaternion‐valued memristor‐based neural networks. By using M‐matrix theory and fixed point theorem, the existence and uniqueness of the equilibrium point of quaternion‐valued neural network are proved, respectively. Then, by combining M‐matrix with exponential stability theory, a non‐factorization method is obtained by using some inequality techniques to give the effective conditions of global exponential stability of quaternion‐valued memristor‐based neural network with time‐varying delay. Finally, numerical examples are given to demonstrate the validity of the derived results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential stability of a class of quaternion‐valued memristor‐based neural network with time‐varying delay via M‐matrix\",\"authors\":\"Shengye Wang, Yanchao Shi, Jun Guo\",\"doi\":\"10.1002/mma.10486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the problems of exponential stability for a class of quaternion‐valued memristor‐based neural networks. By using M‐matrix theory and fixed point theorem, the existence and uniqueness of the equilibrium point of quaternion‐valued neural network are proved, respectively. Then, by combining M‐matrix with exponential stability theory, a non‐factorization method is obtained by using some inequality techniques to give the effective conditions of global exponential stability of quaternion‐valued memristor‐based neural network with time‐varying delay. Finally, numerical examples are given to demonstrate the validity of the derived results.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类基于四元数值忆阻器的神经网络的指数稳定性问题。利用 M 矩阵理论和定点定理,分别证明了四元数值神经网络平衡点的存在性和唯一性。然后,将 M 矩阵与指数稳定性理论相结合,利用一些不等式技术获得了一种非因子化方法,给出了具有时变延迟的基于四元数值忆阻器的神经网络的全局指数稳定性的有效条件。最后,给出了数值示例来证明推导结果的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential stability of a class of quaternion‐valued memristor‐based neural network with time‐varying delay via M‐matrix
This paper investigates the problems of exponential stability for a class of quaternion‐valued memristor‐based neural networks. By using M‐matrix theory and fixed point theorem, the existence and uniqueness of the equilibrium point of quaternion‐valued neural network are proved, respectively. Then, by combining M‐matrix with exponential stability theory, a non‐factorization method is obtained by using some inequality techniques to give the effective conditions of global exponential stability of quaternion‐valued memristor‐based neural network with time‐varying delay. Finally, numerical examples are given to demonstrate the validity of the derived results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信