粘弹性、对数应力和张量传输方程

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Gennaro Ciampa, Giulio G. Giusteri, Alessio G. Soggiu
{"title":"粘弹性、对数应力和张量传输方程","authors":"Gennaro Ciampa, Giulio G. Giusteri, Alessio G. Soggiu","doi":"10.1002/mma.10469","DOIUrl":null,"url":null,"abstract":"We introduce models for viscoelastic materials, both solids and fluids, based on logarithmic stresses to capture the elastic contribution to the material response. The matrix logarithm allows to link the measures of strain, that naturally belong to a multiplicative group of linear transformations, to stresses, that are additive elements of a linear space of tensors. As regards the viscous stresses, we simply assume a Newtonian constitutive law, but the presence of elasticity and plastic relaxation makes the materials non‐Newtonian. Our aim is to discuss the existence of weak solutions for the corresponding systems of partial differential equations in the nonlinear large‐deformation regime. The main difficulties arise in the analysis of the transport equations necessary to describe the evolution of tensorial measures of strain. For the solid model, we only need to consider the equation for the left Cauchy–Green tensor, while for the fluid model, we add an evolution equation for the elastically‐relaxed strain. Due to the tensorial nature of the fields, available techniques cannot be applied to the analysis of such transport equations. To cope with this, we introduce the notion of charted weak solution, based on non‐standard a priori estimates, that lead to a global‐in‐time existence of solutions for the viscoelastic models in the natural functional setting associated with the energy inequality.","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"171 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscoelasticity, logarithmic stresses, and tensorial transport equations\",\"authors\":\"Gennaro Ciampa, Giulio G. Giusteri, Alessio G. Soggiu\",\"doi\":\"10.1002/mma.10469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce models for viscoelastic materials, both solids and fluids, based on logarithmic stresses to capture the elastic contribution to the material response. The matrix logarithm allows to link the measures of strain, that naturally belong to a multiplicative group of linear transformations, to stresses, that are additive elements of a linear space of tensors. As regards the viscous stresses, we simply assume a Newtonian constitutive law, but the presence of elasticity and plastic relaxation makes the materials non‐Newtonian. Our aim is to discuss the existence of weak solutions for the corresponding systems of partial differential equations in the nonlinear large‐deformation regime. The main difficulties arise in the analysis of the transport equations necessary to describe the evolution of tensorial measures of strain. For the solid model, we only need to consider the equation for the left Cauchy–Green tensor, while for the fluid model, we add an evolution equation for the elastically‐relaxed strain. Due to the tensorial nature of the fields, available techniques cannot be applied to the analysis of such transport equations. To cope with this, we introduce the notion of charted weak solution, based on non‐standard a priori estimates, that lead to a global‐in‐time existence of solutions for the viscoelastic models in the natural functional setting associated with the energy inequality.\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"171 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10469\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10469","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了基于对数应力的粘弹性材料(包括固体和流体)模型,以捕捉材料响应的弹性贡献。矩阵对数允许将自然属于线性变换乘法组的应变测量值与应力联系起来,应力是张量线性空间的加法元素。至于粘性应力,我们只需假设牛顿构成定律,但弹性和塑性松弛的存在使材料成为非牛顿材料。我们的目的是讨论相应的偏微分方程系统在非线性大变形体系中是否存在弱解。主要困难在于分析描述张量应变演变所需的传输方程。对于固体模型,我们只需要考虑左 Cauchy-Green 张量的方程,而对于流体模型,我们还需要考虑弹性松弛应变的演化方程。由于场的张量性质,现有技术无法用于分析此类传输方程。为了解决这个问题,我们引入了基于非标准先验估计的图表弱解概念,从而在与能量不等式相关的自然函数设置中,为粘弹性模型找到了全局时间内存在的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Viscoelasticity, logarithmic stresses, and tensorial transport equations
We introduce models for viscoelastic materials, both solids and fluids, based on logarithmic stresses to capture the elastic contribution to the material response. The matrix logarithm allows to link the measures of strain, that naturally belong to a multiplicative group of linear transformations, to stresses, that are additive elements of a linear space of tensors. As regards the viscous stresses, we simply assume a Newtonian constitutive law, but the presence of elasticity and plastic relaxation makes the materials non‐Newtonian. Our aim is to discuss the existence of weak solutions for the corresponding systems of partial differential equations in the nonlinear large‐deformation regime. The main difficulties arise in the analysis of the transport equations necessary to describe the evolution of tensorial measures of strain. For the solid model, we only need to consider the equation for the left Cauchy–Green tensor, while for the fluid model, we add an evolution equation for the elastically‐relaxed strain. Due to the tensorial nature of the fields, available techniques cannot be applied to the analysis of such transport equations. To cope with this, we introduce the notion of charted weak solution, based on non‐standard a priori estimates, that lead to a global‐in‐time existence of solutions for the viscoelastic models in the natural functional setting associated with the energy inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信