Gennaro Ciampa, Giulio G. Giusteri, Alessio G. Soggiu
{"title":"粘弹性、对数应力和张量传输方程","authors":"Gennaro Ciampa, Giulio G. Giusteri, Alessio G. Soggiu","doi":"10.1002/mma.10469","DOIUrl":null,"url":null,"abstract":"We introduce models for viscoelastic materials, both solids and fluids, based on logarithmic stresses to capture the elastic contribution to the material response. The matrix logarithm allows to link the measures of strain, that naturally belong to a multiplicative group of linear transformations, to stresses, that are additive elements of a linear space of tensors. As regards the viscous stresses, we simply assume a Newtonian constitutive law, but the presence of elasticity and plastic relaxation makes the materials non‐Newtonian. Our aim is to discuss the existence of weak solutions for the corresponding systems of partial differential equations in the nonlinear large‐deformation regime. The main difficulties arise in the analysis of the transport equations necessary to describe the evolution of tensorial measures of strain. For the solid model, we only need to consider the equation for the left Cauchy–Green tensor, while for the fluid model, we add an evolution equation for the elastically‐relaxed strain. Due to the tensorial nature of the fields, available techniques cannot be applied to the analysis of such transport equations. To cope with this, we introduce the notion of charted weak solution, based on non‐standard a priori estimates, that lead to a global‐in‐time existence of solutions for the viscoelastic models in the natural functional setting associated with the energy inequality.","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"171 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscoelasticity, logarithmic stresses, and tensorial transport equations\",\"authors\":\"Gennaro Ciampa, Giulio G. Giusteri, Alessio G. Soggiu\",\"doi\":\"10.1002/mma.10469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce models for viscoelastic materials, both solids and fluids, based on logarithmic stresses to capture the elastic contribution to the material response. The matrix logarithm allows to link the measures of strain, that naturally belong to a multiplicative group of linear transformations, to stresses, that are additive elements of a linear space of tensors. As regards the viscous stresses, we simply assume a Newtonian constitutive law, but the presence of elasticity and plastic relaxation makes the materials non‐Newtonian. Our aim is to discuss the existence of weak solutions for the corresponding systems of partial differential equations in the nonlinear large‐deformation regime. The main difficulties arise in the analysis of the transport equations necessary to describe the evolution of tensorial measures of strain. For the solid model, we only need to consider the equation for the left Cauchy–Green tensor, while for the fluid model, we add an evolution equation for the elastically‐relaxed strain. Due to the tensorial nature of the fields, available techniques cannot be applied to the analysis of such transport equations. To cope with this, we introduce the notion of charted weak solution, based on non‐standard a priori estimates, that lead to a global‐in‐time existence of solutions for the viscoelastic models in the natural functional setting associated with the energy inequality.\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"171 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10469\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10469","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Viscoelasticity, logarithmic stresses, and tensorial transport equations
We introduce models for viscoelastic materials, both solids and fluids, based on logarithmic stresses to capture the elastic contribution to the material response. The matrix logarithm allows to link the measures of strain, that naturally belong to a multiplicative group of linear transformations, to stresses, that are additive elements of a linear space of tensors. As regards the viscous stresses, we simply assume a Newtonian constitutive law, but the presence of elasticity and plastic relaxation makes the materials non‐Newtonian. Our aim is to discuss the existence of weak solutions for the corresponding systems of partial differential equations in the nonlinear large‐deformation regime. The main difficulties arise in the analysis of the transport equations necessary to describe the evolution of tensorial measures of strain. For the solid model, we only need to consider the equation for the left Cauchy–Green tensor, while for the fluid model, we add an evolution equation for the elastically‐relaxed strain. Due to the tensorial nature of the fields, available techniques cannot be applied to the analysis of such transport equations. To cope with this, we introduce the notion of charted weak solution, based on non‐standard a priori estimates, that lead to a global‐in‐time existence of solutions for the viscoelastic models in the natural functional setting associated with the energy inequality.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.