{"title":"增强植物抗病性:生物控制剂战略的启示","authors":"Asha Rani Sheoran, Nita Lakra, Baljeet Singh Saharan, Annu Luhach, Ravinder Kumar, Chandra Shekhar Seth, Joginder Singh Duhan","doi":"10.1007/s00344-024-11480-y","DOIUrl":null,"url":null,"abstract":"<p>Plant pathogens pose a significant threat to agricultural production due to their ability to cause diseases with substantial economic and environmental consequences. Effective management of plant pathogens is crucial for ensuring global food security and sustainability in agriculture. Biocontrol agents (BCAs) offer eco-friendly alternatives to conventional pesticides, harnessing the beneficial effects of symbiotic relationships between plants and microbes. BCAs operate through two primary mechanisms: biofertilization, where microorganisms enhance mineral availability, or by outcompeting the pathogens. The manipulation of plant microbiomes presents a promising avenue for achieving sustainable agriculture by improving nutrient uptake and disease resistance. This review comprehensively evaluates various strategies BCAs employ for plant pathogen management. These strategies encompass competition for resources and the production of antimicrobial compounds that inhibit pathogen growth. Additionally, BCAs modulate plant hormone levels, enhancing plant defence against pathogens and inducing systemic resistance mechanisms, priming plants for future pathogen attacks. Emerging techniques, such as the utilization of viruses and RNA interference, are explored for their potential to enhance BCA efficacy within integrated pest management frameworks. By leveraging viral pathogens and RNA molecules, BCAs can precisely target specific pathogens, reducing collateral damage to beneficial organisms. Implementing BCA-based pest management strategies diminishes the reliance on synthetic insecticides, mitigating ecological repercussions associated with chemical use. Integrated pest management practices fostered by BCAs promote long-term agricultural resilience, ensuring the robustness and efficiency of farming yields while minimizing environmental degradation.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":"96 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Plant Disease Resistance: Insights from Biocontrol Agent Strategies\",\"authors\":\"Asha Rani Sheoran, Nita Lakra, Baljeet Singh Saharan, Annu Luhach, Ravinder Kumar, Chandra Shekhar Seth, Joginder Singh Duhan\",\"doi\":\"10.1007/s00344-024-11480-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plant pathogens pose a significant threat to agricultural production due to their ability to cause diseases with substantial economic and environmental consequences. Effective management of plant pathogens is crucial for ensuring global food security and sustainability in agriculture. Biocontrol agents (BCAs) offer eco-friendly alternatives to conventional pesticides, harnessing the beneficial effects of symbiotic relationships between plants and microbes. BCAs operate through two primary mechanisms: biofertilization, where microorganisms enhance mineral availability, or by outcompeting the pathogens. The manipulation of plant microbiomes presents a promising avenue for achieving sustainable agriculture by improving nutrient uptake and disease resistance. This review comprehensively evaluates various strategies BCAs employ for plant pathogen management. These strategies encompass competition for resources and the production of antimicrobial compounds that inhibit pathogen growth. Additionally, BCAs modulate plant hormone levels, enhancing plant defence against pathogens and inducing systemic resistance mechanisms, priming plants for future pathogen attacks. Emerging techniques, such as the utilization of viruses and RNA interference, are explored for their potential to enhance BCA efficacy within integrated pest management frameworks. By leveraging viral pathogens and RNA molecules, BCAs can precisely target specific pathogens, reducing collateral damage to beneficial organisms. Implementing BCA-based pest management strategies diminishes the reliance on synthetic insecticides, mitigating ecological repercussions associated with chemical use. Integrated pest management practices fostered by BCAs promote long-term agricultural resilience, ensuring the robustness and efficiency of farming yields while minimizing environmental degradation.</p>\",\"PeriodicalId\":16842,\"journal\":{\"name\":\"Journal of Plant Growth Regulation\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Growth Regulation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00344-024-11480-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00344-024-11480-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Enhancing Plant Disease Resistance: Insights from Biocontrol Agent Strategies
Plant pathogens pose a significant threat to agricultural production due to their ability to cause diseases with substantial economic and environmental consequences. Effective management of plant pathogens is crucial for ensuring global food security and sustainability in agriculture. Biocontrol agents (BCAs) offer eco-friendly alternatives to conventional pesticides, harnessing the beneficial effects of symbiotic relationships between plants and microbes. BCAs operate through two primary mechanisms: biofertilization, where microorganisms enhance mineral availability, or by outcompeting the pathogens. The manipulation of plant microbiomes presents a promising avenue for achieving sustainable agriculture by improving nutrient uptake and disease resistance. This review comprehensively evaluates various strategies BCAs employ for plant pathogen management. These strategies encompass competition for resources and the production of antimicrobial compounds that inhibit pathogen growth. Additionally, BCAs modulate plant hormone levels, enhancing plant defence against pathogens and inducing systemic resistance mechanisms, priming plants for future pathogen attacks. Emerging techniques, such as the utilization of viruses and RNA interference, are explored for their potential to enhance BCA efficacy within integrated pest management frameworks. By leveraging viral pathogens and RNA molecules, BCAs can precisely target specific pathogens, reducing collateral damage to beneficial organisms. Implementing BCA-based pest management strategies diminishes the reliance on synthetic insecticides, mitigating ecological repercussions associated with chemical use. Integrated pest management practices fostered by BCAs promote long-term agricultural resilience, ensuring the robustness and efficiency of farming yields while minimizing environmental degradation.
期刊介绍:
The Journal of Plant Growth Regulation is an international publication featuring original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research on various aspects of plant growth and development using hormonal, physiological, environmental, genetic, biophysical, developmental and/or molecular approaches.
The journal also publishes timely reviews on highly relevant areas and/or studies in plant growth and development, including interdisciplinary work with an emphasis on plant growth, plant hormones and plant pathology or abiotic stress.
In addition, the journal features occasional thematic issues with special guest editors, as well as brief communications describing novel techniques and meeting reports.
The journal is unlikely to accept manuscripts that are purely descriptive in nature or reports work with simple tissue culture without attempting to investigate the underlying mechanisms of plant growth regulation, those that focus exclusively on microbial communities, or deal with the (elicitation by plant hormones of) synthesis of secondary metabolites.