Mohamed Abdillahi Isman, Wiem Nefzi, Papa Mbaye, Salah Khardani, Anne-Françoise Yao
{"title":"具有黎曼流形中数值的随机过程的核密度估计","authors":"Mohamed Abdillahi Isman, Wiem Nefzi, Papa Mbaye, Salah Khardani, Anne-Françoise Yao","doi":"10.1080/10485252.2024.2382442","DOIUrl":null,"url":null,"abstract":"This paper is related to the issue of the density estimation of observations with values in a Riemannian submanifold. In this context, Henry and Rodriguez ((2009), ‘Kernel Density Estimation on Rie...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"3 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel density estimation for a stochastic process with values in a Riemannian manifold\",\"authors\":\"Mohamed Abdillahi Isman, Wiem Nefzi, Papa Mbaye, Salah Khardani, Anne-Françoise Yao\",\"doi\":\"10.1080/10485252.2024.2382442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is related to the issue of the density estimation of observations with values in a Riemannian submanifold. In this context, Henry and Rodriguez ((2009), ‘Kernel Density Estimation on Rie...\",\"PeriodicalId\":50112,\"journal\":{\"name\":\"Journal of Nonparametric Statistics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonparametric Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10485252.2024.2382442\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2024.2382442","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
本文与黎曼子实体中观测值的密度估计问题有关。在这方面,Henry 和 Rodriguez(2009 年)的 "Kernel Density Estimation on Rie...
Kernel density estimation for a stochastic process with values in a Riemannian manifold
This paper is related to the issue of the density estimation of observations with values in a Riemannian submanifold. In this context, Henry and Rodriguez ((2009), ‘Kernel Density Estimation on Rie...
期刊介绍:
Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics:
Nonparametric modeling,
Nonparametric function estimation,
Rank and other robust and distribution-free procedures,
Resampling methods,
Lack-of-fit testing,
Multivariate analysis,
Inference with high-dimensional data,
Dimension reduction and variable selection,
Methods for errors in variables, missing, censored, and other incomplete data structures,
Inference of stochastic processes,
Sample surveys,
Time series analysis,
Longitudinal and functional data analysis,
Nonparametric Bayes methods and decision procedures,
Semiparametric models and procedures,
Statistical methods for imaging and tomography,
Statistical inverse problems,
Financial statistics and econometrics,
Bioinformatics and comparative genomics,
Statistical algorithms and machine learning.
Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order.
Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.