图增强低资源文本分类的提示调整

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhihao Wen;Yuan Fang
{"title":"图增强低资源文本分类的提示调整","authors":"Zhihao Wen;Yuan Fang","doi":"10.1109/TKDE.2024.3440068","DOIUrl":null,"url":null,"abstract":"Text classification is a fundamental problem in information retrieval with many real-world applications, such as predicting the topics of online articles and the categories of e-commerce product descriptions. However, low-resource text classification, with no or few labeled samples, presents a serious concern for supervised learning. Meanwhile, many text data are inherently grounded on a network structure, such as a hyperlink/citation network for online articles, and a user-item purchase network for e-commerce products. These graph structures capture rich semantic relationships, which can potentially augment low-resource text classification. In this paper, we propose a novel model called Graph-Grounded Pre-training and Prompting (G2P2) to address low-resource text classification in a two-pronged approach. During pre-training, we propose three graph interaction-based contrastive strategies to jointly pre-train a graph-text model; during downstream classification, we explore handcrafted discrete prompts and continuous prompt tuning for the jointly pre-trained model to achieve zero- and few-shot classification, respectively. Moreover, we explore the possibility of employing continuous prompt tuning for zero-shot inference. Specifically, we aim to generalize continuous prompts to unseen classes while leveraging a set of base classes. To this end, we extend G2P2 into G2P2\n<inline-formula><tex-math>$^*$</tex-math></inline-formula>\n, hinging on a new architecture of conditional prompt tuning. Extensive experiments on four real-world datasets demonstrate the strength of G2P2 in zero- and few-shot low-resource text classification tasks, and illustrate the advantage of G2P2\n<inline-formula><tex-math>$^*$</tex-math></inline-formula>\n in dealing with unseen classes.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"9080-9095"},"PeriodicalIF":8.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prompt Tuning on Graph-Augmented Low-Resource Text Classification\",\"authors\":\"Zhihao Wen;Yuan Fang\",\"doi\":\"10.1109/TKDE.2024.3440068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text classification is a fundamental problem in information retrieval with many real-world applications, such as predicting the topics of online articles and the categories of e-commerce product descriptions. However, low-resource text classification, with no or few labeled samples, presents a serious concern for supervised learning. Meanwhile, many text data are inherently grounded on a network structure, such as a hyperlink/citation network for online articles, and a user-item purchase network for e-commerce products. These graph structures capture rich semantic relationships, which can potentially augment low-resource text classification. In this paper, we propose a novel model called Graph-Grounded Pre-training and Prompting (G2P2) to address low-resource text classification in a two-pronged approach. During pre-training, we propose three graph interaction-based contrastive strategies to jointly pre-train a graph-text model; during downstream classification, we explore handcrafted discrete prompts and continuous prompt tuning for the jointly pre-trained model to achieve zero- and few-shot classification, respectively. Moreover, we explore the possibility of employing continuous prompt tuning for zero-shot inference. Specifically, we aim to generalize continuous prompts to unseen classes while leveraging a set of base classes. To this end, we extend G2P2 into G2P2\\n<inline-formula><tex-math>$^*$</tex-math></inline-formula>\\n, hinging on a new architecture of conditional prompt tuning. Extensive experiments on four real-world datasets demonstrate the strength of G2P2 in zero- and few-shot low-resource text classification tasks, and illustrate the advantage of G2P2\\n<inline-formula><tex-math>$^*$</tex-math></inline-formula>\\n in dealing with unseen classes.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"9080-9095\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10633805/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10633805/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

文本分类是信息检索中的一个基本问题,在现实世界中有很多应用,例如预测在线文章的主题和电子商务产品描述的类别。然而,低资源文本分类由于没有或只有很少的标注样本,给监督学习带来了严重的问题。同时,许多文本数据本身就基于网络结构,例如在线文章的超链接/引用网络和电子商务产品的用户-物品购买网络。这些图结构捕捉了丰富的语义关系,有可能增强低资源文本分类。在本文中,我们提出了一种名为 "基于图的预训练和提示"(Graph-Grounded Pre-training and Prompting,G2P2)的新模型,以双管齐下的方式解决低资源文本分类问题。在预训练过程中,我们提出了三种基于图交互的对比策略,以联合预训练图-文本模型;在下游分类过程中,我们探索了手工制作离散提示和连续提示调整联合预训练模型的方法,以分别实现零次和少量分类。此外,我们还探索了采用连续提示调整进行零次推理的可能性。具体来说,我们的目标是将连续提示泛化到未见过的类别,同时利用一组基础类别。为此,我们将 G2P2 扩展为 G2P2$^*$,以条件提示调整的新架构为基础。在四个真实世界的数据集上进行的广泛实验证明了 G2P2 在零和少数几次低资源文本分类任务中的优势,并说明了 G2P2$^*$ 在处理未见类别时的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prompt Tuning on Graph-Augmented Low-Resource Text Classification
Text classification is a fundamental problem in information retrieval with many real-world applications, such as predicting the topics of online articles and the categories of e-commerce product descriptions. However, low-resource text classification, with no or few labeled samples, presents a serious concern for supervised learning. Meanwhile, many text data are inherently grounded on a network structure, such as a hyperlink/citation network for online articles, and a user-item purchase network for e-commerce products. These graph structures capture rich semantic relationships, which can potentially augment low-resource text classification. In this paper, we propose a novel model called Graph-Grounded Pre-training and Prompting (G2P2) to address low-resource text classification in a two-pronged approach. During pre-training, we propose three graph interaction-based contrastive strategies to jointly pre-train a graph-text model; during downstream classification, we explore handcrafted discrete prompts and continuous prompt tuning for the jointly pre-trained model to achieve zero- and few-shot classification, respectively. Moreover, we explore the possibility of employing continuous prompt tuning for zero-shot inference. Specifically, we aim to generalize continuous prompts to unseen classes while leveraging a set of base classes. To this end, we extend G2P2 into G2P2 $^*$ , hinging on a new architecture of conditional prompt tuning. Extensive experiments on four real-world datasets demonstrate the strength of G2P2 in zero- and few-shot low-resource text classification tasks, and illustrate the advantage of G2P2 $^*$ in dealing with unseen classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信