{"title":"图增强低资源文本分类的提示调整","authors":"Zhihao Wen;Yuan Fang","doi":"10.1109/TKDE.2024.3440068","DOIUrl":null,"url":null,"abstract":"Text classification is a fundamental problem in information retrieval with many real-world applications, such as predicting the topics of online articles and the categories of e-commerce product descriptions. However, low-resource text classification, with no or few labeled samples, presents a serious concern for supervised learning. Meanwhile, many text data are inherently grounded on a network structure, such as a hyperlink/citation network for online articles, and a user-item purchase network for e-commerce products. These graph structures capture rich semantic relationships, which can potentially augment low-resource text classification. In this paper, we propose a novel model called Graph-Grounded Pre-training and Prompting (G2P2) to address low-resource text classification in a two-pronged approach. During pre-training, we propose three graph interaction-based contrastive strategies to jointly pre-train a graph-text model; during downstream classification, we explore handcrafted discrete prompts and continuous prompt tuning for the jointly pre-trained model to achieve zero- and few-shot classification, respectively. Moreover, we explore the possibility of employing continuous prompt tuning for zero-shot inference. Specifically, we aim to generalize continuous prompts to unseen classes while leveraging a set of base classes. To this end, we extend G2P2 into G2P2\n<inline-formula><tex-math>$^*$</tex-math></inline-formula>\n, hinging on a new architecture of conditional prompt tuning. Extensive experiments on four real-world datasets demonstrate the strength of G2P2 in zero- and few-shot low-resource text classification tasks, and illustrate the advantage of G2P2\n<inline-formula><tex-math>$^*$</tex-math></inline-formula>\n in dealing with unseen classes.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"9080-9095"},"PeriodicalIF":8.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prompt Tuning on Graph-Augmented Low-Resource Text Classification\",\"authors\":\"Zhihao Wen;Yuan Fang\",\"doi\":\"10.1109/TKDE.2024.3440068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text classification is a fundamental problem in information retrieval with many real-world applications, such as predicting the topics of online articles and the categories of e-commerce product descriptions. However, low-resource text classification, with no or few labeled samples, presents a serious concern for supervised learning. Meanwhile, many text data are inherently grounded on a network structure, such as a hyperlink/citation network for online articles, and a user-item purchase network for e-commerce products. These graph structures capture rich semantic relationships, which can potentially augment low-resource text classification. In this paper, we propose a novel model called Graph-Grounded Pre-training and Prompting (G2P2) to address low-resource text classification in a two-pronged approach. During pre-training, we propose three graph interaction-based contrastive strategies to jointly pre-train a graph-text model; during downstream classification, we explore handcrafted discrete prompts and continuous prompt tuning for the jointly pre-trained model to achieve zero- and few-shot classification, respectively. Moreover, we explore the possibility of employing continuous prompt tuning for zero-shot inference. Specifically, we aim to generalize continuous prompts to unseen classes while leveraging a set of base classes. To this end, we extend G2P2 into G2P2\\n<inline-formula><tex-math>$^*$</tex-math></inline-formula>\\n, hinging on a new architecture of conditional prompt tuning. Extensive experiments on four real-world datasets demonstrate the strength of G2P2 in zero- and few-shot low-resource text classification tasks, and illustrate the advantage of G2P2\\n<inline-formula><tex-math>$^*$</tex-math></inline-formula>\\n in dealing with unseen classes.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"9080-9095\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10633805/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10633805/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Prompt Tuning on Graph-Augmented Low-Resource Text Classification
Text classification is a fundamental problem in information retrieval with many real-world applications, such as predicting the topics of online articles and the categories of e-commerce product descriptions. However, low-resource text classification, with no or few labeled samples, presents a serious concern for supervised learning. Meanwhile, many text data are inherently grounded on a network structure, such as a hyperlink/citation network for online articles, and a user-item purchase network for e-commerce products. These graph structures capture rich semantic relationships, which can potentially augment low-resource text classification. In this paper, we propose a novel model called Graph-Grounded Pre-training and Prompting (G2P2) to address low-resource text classification in a two-pronged approach. During pre-training, we propose three graph interaction-based contrastive strategies to jointly pre-train a graph-text model; during downstream classification, we explore handcrafted discrete prompts and continuous prompt tuning for the jointly pre-trained model to achieve zero- and few-shot classification, respectively. Moreover, we explore the possibility of employing continuous prompt tuning for zero-shot inference. Specifically, we aim to generalize continuous prompts to unseen classes while leveraging a set of base classes. To this end, we extend G2P2 into G2P2
$^*$
, hinging on a new architecture of conditional prompt tuning. Extensive experiments on four real-world datasets demonstrate the strength of G2P2 in zero- and few-shot low-resource text classification tasks, and illustrate the advantage of G2P2
$^*$
in dealing with unseen classes.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.