用于少数群体增量的邻域分布学习

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mengting Zhou;Zhiguo Gong
{"title":"用于少数群体增量的邻域分布学习","authors":"Mengting Zhou;Zhiguo Gong","doi":"10.1109/TKDE.2024.3447014","DOIUrl":null,"url":null,"abstract":"Graph Neural Networks (GNNs) have achieved remarkable success in graph-based tasks. However, learning unbiased node representations under class-imbalanced training data remains challenging. Existing solutions may face overfitting due to extensive reuse of those limited labeled data in minority classes. Furthermore, many works address the class-imbalanced issue based on the embeddings generated from the biased GNNs, which make models intrinsically biased towards majority classes. In this paper, we propose a novel data augmentation strategy GraphGLS for semi-supervised class-imbalanced node classification, which aims to select informative unlabeled nodes to augment minority classes with consideration of both global and local information. Specifically, we first design a Global Selection module to learn global information (pseudo-labels) for unlabeled nodes and then select potential ones from them for minority classes. The Local Selection module further conducts filtering over those potential nodes by comparing their neighbor distributions with minority classes. To achieve this, we further design a neighbor distribution auto-encoder to learn a robust node-level neighbor distribution for each node. Then, we define class-level neighbor distribution to capture the overall neighbor characteristics of nodes within the same class. We conduct extensive experiments on multiple datasets, and the results demonstrate the superiority of GraphGLS over state-of-the-art baselines.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"8901-8913"},"PeriodicalIF":8.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neighbor Distribution Learning for Minority Class Augmentation\",\"authors\":\"Mengting Zhou;Zhiguo Gong\",\"doi\":\"10.1109/TKDE.2024.3447014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph Neural Networks (GNNs) have achieved remarkable success in graph-based tasks. However, learning unbiased node representations under class-imbalanced training data remains challenging. Existing solutions may face overfitting due to extensive reuse of those limited labeled data in minority classes. Furthermore, many works address the class-imbalanced issue based on the embeddings generated from the biased GNNs, which make models intrinsically biased towards majority classes. In this paper, we propose a novel data augmentation strategy GraphGLS for semi-supervised class-imbalanced node classification, which aims to select informative unlabeled nodes to augment minority classes with consideration of both global and local information. Specifically, we first design a Global Selection module to learn global information (pseudo-labels) for unlabeled nodes and then select potential ones from them for minority classes. The Local Selection module further conducts filtering over those potential nodes by comparing their neighbor distributions with minority classes. To achieve this, we further design a neighbor distribution auto-encoder to learn a robust node-level neighbor distribution for each node. Then, we define class-level neighbor distribution to capture the overall neighbor characteristics of nodes within the same class. We conduct extensive experiments on multiple datasets, and the results demonstrate the superiority of GraphGLS over state-of-the-art baselines.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"8901-8913\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643319/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10643319/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

图神经网络(GNN)在基于图的任务中取得了巨大成功。然而,在类不平衡的训练数据下学习无偏的节点表示仍然具有挑战性。现有的解决方案可能会面临过拟合问题,原因是在少数类别中大量重复使用了有限的标注数据。此外,许多工作都是基于有偏差的 GNN 生成的嵌入来解决类不平衡问题的,这使得模型本质上偏向于多数类。在本文中,我们提出了一种用于半监督类不平衡节点分类的新型数据增强策略 GraphGLS,其目的是在考虑全局和局部信息的情况下,选择有信息量的未标记节点来增强少数类。具体来说,我们首先设计了一个全局选择模块来学习未标记节点的全局信息(伪标签),然后从中选择潜在的节点作为少数类。本地选择模块通过比较潜在节点与少数群体类别的邻居分布,进一步对这些节点进行筛选。为此,我们进一步设计了邻居分布自动编码器,为每个节点学习稳健的节点级邻居分布。然后,我们定义了类级邻居分布,以捕捉同一类中节点的整体邻居特征。我们在多个数据集上进行了广泛的实验,结果表明 GraphGLS 优于最先进的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neighbor Distribution Learning for Minority Class Augmentation
Graph Neural Networks (GNNs) have achieved remarkable success in graph-based tasks. However, learning unbiased node representations under class-imbalanced training data remains challenging. Existing solutions may face overfitting due to extensive reuse of those limited labeled data in minority classes. Furthermore, many works address the class-imbalanced issue based on the embeddings generated from the biased GNNs, which make models intrinsically biased towards majority classes. In this paper, we propose a novel data augmentation strategy GraphGLS for semi-supervised class-imbalanced node classification, which aims to select informative unlabeled nodes to augment minority classes with consideration of both global and local information. Specifically, we first design a Global Selection module to learn global information (pseudo-labels) for unlabeled nodes and then select potential ones from them for minority classes. The Local Selection module further conducts filtering over those potential nodes by comparing their neighbor distributions with minority classes. To achieve this, we further design a neighbor distribution auto-encoder to learn a robust node-level neighbor distribution for each node. Then, we define class-level neighbor distribution to capture the overall neighbor characteristics of nodes within the same class. We conduct extensive experiments on multiple datasets, and the results demonstrate the superiority of GraphGLS over state-of-the-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信