基于三因式分解的 SNLF 表征与改进的动量纳入 AGD:一种知识转移方法

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ming Li;Yan Song;Derui Ding;Ran Sun
{"title":"基于三因式分解的 SNLF 表征与改进的动量纳入 AGD:一种知识转移方法","authors":"Ming Li;Yan Song;Derui Ding;Ran Sun","doi":"10.1109/TKDE.2024.3450469","DOIUrl":null,"url":null,"abstract":"Symmetric, high-dimensional and sparse (SHiDS) networks usually contain rich knowledge regarding various patterns. To adequately extract useful information from SHiDS networks, a novel biased triple factorization-based (TF) symmetric and non-negative latent factor (SNLF) model is put forward by utilizing the transfer learning (TL) method, namely biased TL-incorporated TF-SNLF (BT\n<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\n-SNLF) model. The proposed BT\n<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\n-SNLF model mainly includes the following four ideas: 1) the implicit knowledge of the auxiliary matrix in the ternary rating domain is transferred to the target matrix in the numerical rating domain, facilitating the feature extraction; 2) two linear bias vectors are considered into the objective function to discover the knowledge describing the individual entity-oriented effect; 3) an improved momentum-incorporated additive gradient descent algorithm is developed to speed up the model convergence as well as guarantee the non-negativity of target SHiDS networks; and 4) a rigorous proof is provided to show that, under the assumption that the objective function is \n<inline-formula><tex-math>$L$</tex-math></inline-formula>\n-smooth and \n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\n-convex, when \n<inline-formula><tex-math>$t\\geq t_{0}$</tex-math></inline-formula>\n, the algorithm begins to descend and it can find an \n<inline-formula><tex-math>$\\epsilon$</tex-math></inline-formula>\n-solution within \n<inline-formula><tex-math>$O(ln((1+\\frac{\\mu L}{L(1+\\mu )+8\\mu })/\\epsilon ))$</tex-math></inline-formula>\n. Experimental results on six datasets from real applications demonstrate the effectiveness of our proposed T\n<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\n-SNLF and BT\n<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\n-SNLF models.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"9448-9463"},"PeriodicalIF":8.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triple Factorization-Based SNLF Representation With Improved Momentum-Incorporated AGD: A Knowledge Transfer Approach\",\"authors\":\"Ming Li;Yan Song;Derui Ding;Ran Sun\",\"doi\":\"10.1109/TKDE.2024.3450469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symmetric, high-dimensional and sparse (SHiDS) networks usually contain rich knowledge regarding various patterns. To adequately extract useful information from SHiDS networks, a novel biased triple factorization-based (TF) symmetric and non-negative latent factor (SNLF) model is put forward by utilizing the transfer learning (TL) method, namely biased TL-incorporated TF-SNLF (BT\\n<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\\n-SNLF) model. The proposed BT\\n<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\\n-SNLF model mainly includes the following four ideas: 1) the implicit knowledge of the auxiliary matrix in the ternary rating domain is transferred to the target matrix in the numerical rating domain, facilitating the feature extraction; 2) two linear bias vectors are considered into the objective function to discover the knowledge describing the individual entity-oriented effect; 3) an improved momentum-incorporated additive gradient descent algorithm is developed to speed up the model convergence as well as guarantee the non-negativity of target SHiDS networks; and 4) a rigorous proof is provided to show that, under the assumption that the objective function is \\n<inline-formula><tex-math>$L$</tex-math></inline-formula>\\n-smooth and \\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\n-convex, when \\n<inline-formula><tex-math>$t\\\\geq t_{0}$</tex-math></inline-formula>\\n, the algorithm begins to descend and it can find an \\n<inline-formula><tex-math>$\\\\epsilon$</tex-math></inline-formula>\\n-solution within \\n<inline-formula><tex-math>$O(ln((1+\\\\frac{\\\\mu L}{L(1+\\\\mu )+8\\\\mu })/\\\\epsilon ))$</tex-math></inline-formula>\\n. Experimental results on six datasets from real applications demonstrate the effectiveness of our proposed T\\n<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\\n-SNLF and BT\\n<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\\n-SNLF models.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"9448-9463\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10652887/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10652887/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

对称、高维和稀疏(SHiDS)网络通常包含有关各种模式的丰富知识。为了从SHiDS网络中充分提取有用信息,本文利用迁移学习(TL)方法,提出了一种新颖的基于偏置三因式分解(TF)的对称非负潜因(SNLF)模型,即偏置TL-incorporated TF-SNLF(BT$^{2}$-SNLF)模型。所提出的 BT$^{2}$-SNLF 模型主要包括以下四个思想:1)将三元评级域中辅助矩阵的隐含知识转移到数值评级域中的目标矩阵,从而促进特征提取;2)在目标函数中考虑两个线性偏置向量,以发现描述面向个体实体效应的知识;3)开发了一种改进的动量融入加性梯度下降算法,以加快模型收敛速度并保证目标 SHiDS 网络的非负性;4)提供了一个严格的证明,表明在目标函数为$L$平滑且$\mu$凸的假设下,当$t\geq t_{0}$时,算法开始下降,并能在$O(ln((1+rac\{mu L}{L(1+\mu )+8\mu })/\epsilon ))$ 内找到$\epsilon$解。在六个真实应用数据集上的实验结果证明了我们提出的 T$^{2}$-SNLF 和 BT$^{2}$-SNLF 模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triple Factorization-Based SNLF Representation With Improved Momentum-Incorporated AGD: A Knowledge Transfer Approach
Symmetric, high-dimensional and sparse (SHiDS) networks usually contain rich knowledge regarding various patterns. To adequately extract useful information from SHiDS networks, a novel biased triple factorization-based (TF) symmetric and non-negative latent factor (SNLF) model is put forward by utilizing the transfer learning (TL) method, namely biased TL-incorporated TF-SNLF (BT $^{2}$ -SNLF) model. The proposed BT $^{2}$ -SNLF model mainly includes the following four ideas: 1) the implicit knowledge of the auxiliary matrix in the ternary rating domain is transferred to the target matrix in the numerical rating domain, facilitating the feature extraction; 2) two linear bias vectors are considered into the objective function to discover the knowledge describing the individual entity-oriented effect; 3) an improved momentum-incorporated additive gradient descent algorithm is developed to speed up the model convergence as well as guarantee the non-negativity of target SHiDS networks; and 4) a rigorous proof is provided to show that, under the assumption that the objective function is $L$ -smooth and $\mu$ -convex, when $t\geq t_{0}$ , the algorithm begins to descend and it can find an $\epsilon$ -solution within $O(ln((1+\frac{\mu L}{L(1+\mu )+8\mu })/\epsilon ))$ . Experimental results on six datasets from real applications demonstrate the effectiveness of our proposed T $^{2}$ -SNLF and BT $^{2}$ -SNLF models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信