Yujie Li;Xin Yang;Qiang Gao;Hao Wang;Junbo Zhang;Tianrui Li
{"title":"通过知识转移持续学习进行跨地区欺诈检测","authors":"Yujie Li;Xin Yang;Qiang Gao;Hao Wang;Junbo Zhang;Tianrui Li","doi":"10.1109/TKDE.2024.3451161","DOIUrl":null,"url":null,"abstract":"Fraud detection poses a fundamental yet challenging problem to mitigate various risks associated with fraudulent activities. However, existing methods are limited by their reliance on static data within single geographical regions, thereby restricting the trained model’s adaptability across different regions. Practically, when enterprises expand their business into new cities or countries, training a new model from scratch can incur high computational costs and lead to catastrophic forgetting (CF). To address these limitations, we propose cross-regional fraud detection as an incremental learning problem, enabling the development of a unified model capable of adapting across diverse regions without suffering from CF. Subsequently, we introduce Cross-Regional Continual Learning (CCL), a novel paradigm that facilitates knowledge transfer and maintains performance when incrementally training models from previously learned regions to new ones. Specifically, CCL utilizes prototype-based knowledge replay for effective knowledge transfer while implementing a parameter smoothing mechanism to alleviate forgetting. Furthermore, we construct heterogeneous trade graphs (HTGs) and leverage graph-based backbones to enhance knowledge representation and facilitate knowledge transfer by uncovering intricate semantics inherent in cross-regional datasets. Extensive experiments demonstrate the superiority of our proposed method over baseline approaches and its substantial improvement in cross-regional fraud detection performance.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"7865-7877"},"PeriodicalIF":8.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Regional Fraud Detection via Continual Learning With Knowledge Transfer\",\"authors\":\"Yujie Li;Xin Yang;Qiang Gao;Hao Wang;Junbo Zhang;Tianrui Li\",\"doi\":\"10.1109/TKDE.2024.3451161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fraud detection poses a fundamental yet challenging problem to mitigate various risks associated with fraudulent activities. However, existing methods are limited by their reliance on static data within single geographical regions, thereby restricting the trained model’s adaptability across different regions. Practically, when enterprises expand their business into new cities or countries, training a new model from scratch can incur high computational costs and lead to catastrophic forgetting (CF). To address these limitations, we propose cross-regional fraud detection as an incremental learning problem, enabling the development of a unified model capable of adapting across diverse regions without suffering from CF. Subsequently, we introduce Cross-Regional Continual Learning (CCL), a novel paradigm that facilitates knowledge transfer and maintains performance when incrementally training models from previously learned regions to new ones. Specifically, CCL utilizes prototype-based knowledge replay for effective knowledge transfer while implementing a parameter smoothing mechanism to alleviate forgetting. Furthermore, we construct heterogeneous trade graphs (HTGs) and leverage graph-based backbones to enhance knowledge representation and facilitate knowledge transfer by uncovering intricate semantics inherent in cross-regional datasets. Extensive experiments demonstrate the superiority of our proposed method over baseline approaches and its substantial improvement in cross-regional fraud detection performance.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"7865-7877\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10654781/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10654781/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Cross-Regional Fraud Detection via Continual Learning With Knowledge Transfer
Fraud detection poses a fundamental yet challenging problem to mitigate various risks associated with fraudulent activities. However, existing methods are limited by their reliance on static data within single geographical regions, thereby restricting the trained model’s adaptability across different regions. Practically, when enterprises expand their business into new cities or countries, training a new model from scratch can incur high computational costs and lead to catastrophic forgetting (CF). To address these limitations, we propose cross-regional fraud detection as an incremental learning problem, enabling the development of a unified model capable of adapting across diverse regions without suffering from CF. Subsequently, we introduce Cross-Regional Continual Learning (CCL), a novel paradigm that facilitates knowledge transfer and maintains performance when incrementally training models from previously learned regions to new ones. Specifically, CCL utilizes prototype-based knowledge replay for effective knowledge transfer while implementing a parameter smoothing mechanism to alleviate forgetting. Furthermore, we construct heterogeneous trade graphs (HTGs) and leverage graph-based backbones to enhance knowledge representation and facilitate knowledge transfer by uncovering intricate semantics inherent in cross-regional datasets. Extensive experiments demonstrate the superiority of our proposed method over baseline approaches and its substantial improvement in cross-regional fraud detection performance.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.