还原双四元数矩阵方程 EM+M˜F=G$$ EM+tilde{M}F=G$$ 的三个最小规范赫米提解

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sujia Han, Caiqin Song
{"title":"还原双四元数矩阵方程 EM+M˜F=G$$ EM+tilde{M}F=G$$ 的三个最小规范赫米提解","authors":"Sujia Han, Caiqin Song","doi":"10.1002/mma.10424","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the minimal norm Hermitian solution, pure imaginary Hermitian solution and pure real Hermitian solution of the reduced biquaternion matrix equation. We introduce the new real representation of the reduced biquaternion matrix and the special properties of . We present the sufficient and necessary conditions of three solutions and the corresponding numerical algorithms for solving the three solutions. Finally, we show that our method is better than the complex representation method in terms of error and CPU time in numerical examples.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three minimal norm Hermitian solutions of the reduced biquaternion matrix equation EM+M˜F=G$$ EM+\\\\tilde{M}F=G $$\",\"authors\":\"Sujia Han, Caiqin Song\",\"doi\":\"10.1002/mma.10424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the minimal norm Hermitian solution, pure imaginary Hermitian solution and pure real Hermitian solution of the reduced biquaternion matrix equation. We introduce the new real representation of the reduced biquaternion matrix and the special properties of . We present the sufficient and necessary conditions of three solutions and the corresponding numerical algorithms for solving the three solutions. Finally, we show that our method is better than the complex representation method in terms of error and CPU time in numerical examples.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了还原双四元数矩阵方程的最小规范赫米特解、纯虚赫米特解和纯实赫米特解。我们介绍了还原双四元数矩阵的新实数表示及其特殊性质。 我们提出了三种解的充分必要条件以及求解这三种解的相应数值算法。最后,我们在数值示例中证明,就误差和 CPU 时间而言,我们的方法优于复表示方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three minimal norm Hermitian solutions of the reduced biquaternion matrix equation EM+M˜F=G$$ EM+\tilde{M}F=G $$
In this paper, we investigate the minimal norm Hermitian solution, pure imaginary Hermitian solution and pure real Hermitian solution of the reduced biquaternion matrix equation. We introduce the new real representation of the reduced biquaternion matrix and the special properties of . We present the sufficient and necessary conditions of three solutions and the corresponding numerical algorithms for solving the three solutions. Finally, we show that our method is better than the complex representation method in terms of error and CPU time in numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信