{"title":"还原双四元数矩阵方程 EM+M˜F=G$$ EM+tilde{M}F=G$$ 的三个最小规范赫米提解","authors":"Sujia Han, Caiqin Song","doi":"10.1002/mma.10424","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the minimal norm Hermitian solution, pure imaginary Hermitian solution and pure real Hermitian solution of the reduced biquaternion matrix equation. We introduce the new real representation of the reduced biquaternion matrix and the special properties of . We present the sufficient and necessary conditions of three solutions and the corresponding numerical algorithms for solving the three solutions. Finally, we show that our method is better than the complex representation method in terms of error and CPU time in numerical examples.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three minimal norm Hermitian solutions of the reduced biquaternion matrix equation EM+M˜F=G$$ EM+\\\\tilde{M}F=G $$\",\"authors\":\"Sujia Han, Caiqin Song\",\"doi\":\"10.1002/mma.10424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the minimal norm Hermitian solution, pure imaginary Hermitian solution and pure real Hermitian solution of the reduced biquaternion matrix equation. We introduce the new real representation of the reduced biquaternion matrix and the special properties of . We present the sufficient and necessary conditions of three solutions and the corresponding numerical algorithms for solving the three solutions. Finally, we show that our method is better than the complex representation method in terms of error and CPU time in numerical examples.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了还原双四元数矩阵方程的最小规范赫米特解、纯虚赫米特解和纯实赫米特解。我们介绍了还原双四元数矩阵的新实数表示及其特殊性质。 我们提出了三种解的充分必要条件以及求解这三种解的相应数值算法。最后,我们在数值示例中证明,就误差和 CPU 时间而言,我们的方法优于复表示方法。
Three minimal norm Hermitian solutions of the reduced biquaternion matrix equation EM+M˜F=G$$ EM+\tilde{M}F=G $$
In this paper, we investigate the minimal norm Hermitian solution, pure imaginary Hermitian solution and pure real Hermitian solution of the reduced biquaternion matrix equation. We introduce the new real representation of the reduced biquaternion matrix and the special properties of . We present the sufficient and necessary conditions of three solutions and the corresponding numerical algorithms for solving the three solutions. Finally, we show that our method is better than the complex representation method in terms of error and CPU time in numerical examples.