带有不同活细胞的双层径向肿瘤模型中的时间延迟

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Yuanyuan Liu, Yuehong Zhuang
{"title":"带有不同活细胞的双层径向肿瘤模型中的时间延迟","authors":"Yuanyuan Liu,&nbsp;Yuehong Zhuang","doi":"10.1002/mma.10456","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with the free boundary problem for a double-layered tumor filled with quiescent cells and proliferating cells, where time delay \n<span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ \\tau &amp;amp;gt;0 $$</annotation>\n </semantics></math> in cell proliferation is taken into account. These two types of living cells exhibit different metabolic responses and consume nutrients \n<span></span><math>\n <semantics>\n <mrow>\n <mi>σ</mi>\n </mrow>\n <annotation>$$ \\sigma $$</annotation>\n </semantics></math> at different rates \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\lambda}_1 $$</annotation>\n </semantics></math> and \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\lambda}_2 $$</annotation>\n </semantics></math> (\n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>⩽</mo>\n <msub>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\lambda}_1\\leqslant {\\lambda}_2 $$</annotation>\n </semantics></math>). Time delay happens between the time at which a cell commences mitosis and the time at which the daughter cells are produced. The problem is reduced to a delay differential equation on the tumor radius \n<span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ R(t) $$</annotation>\n </semantics></math> over time, and the difficulty arises from the jump discontinuity of the consumption rate function. We give rigorous analysis on this new model and study the dynamical behavior of the global solutions for any initial \n<span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\varphi (t) $$</annotation>\n </semantics></math>.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 2","pages":"2655-2664"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time delays in a double-layered radial tumor model with different living cells\",\"authors\":\"Yuanyuan Liu,&nbsp;Yuehong Zhuang\",\"doi\":\"10.1002/mma.10456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper deals with the free boundary problem for a double-layered tumor filled with quiescent cells and proliferating cells, where time delay \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>τ</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$$ \\\\tau &amp;amp;gt;0 $$</annotation>\\n </semantics></math> in cell proliferation is taken into account. These two types of living cells exhibit different metabolic responses and consume nutrients \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>σ</mi>\\n </mrow>\\n <annotation>$$ \\\\sigma $$</annotation>\\n </semantics></math> at different rates \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\lambda}_1 $$</annotation>\\n </semantics></math> and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\lambda}_2 $$</annotation>\\n </semantics></math> (\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>⩽</mo>\\n <msub>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\lambda}_1\\\\leqslant {\\\\lambda}_2 $$</annotation>\\n </semantics></math>). Time delay happens between the time at which a cell commences mitosis and the time at which the daughter cells are produced. The problem is reduced to a delay differential equation on the tumor radius \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ R(t) $$</annotation>\\n </semantics></math> over time, and the difficulty arises from the jump discontinuity of the consumption rate function. We give rigorous analysis on this new model and study the dynamical behavior of the global solutions for any initial \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>φ</mi>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ \\\\varphi (t) $$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 2\",\"pages\":\"2655-2664\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10456\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10456","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文论述的是充满静止细胞和增殖细胞的双层肿瘤的自由边界问题,其中考虑了细胞增殖的时间延迟。这两类活细胞表现出不同的新陈代谢反应,消耗营养物质的速度和( )不同。时间延迟发生在细胞开始有丝分裂的时间和产生子细胞的时间之间。这个问题被简化为肿瘤半径随时间变化的延迟微分方程,其困难之处在于消耗率函数的跳跃不连续性。我们对这一新模型进行了严谨的分析,并研究了在任何初始条件下全局解的动力学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time delays in a double-layered radial tumor model with different living cells

This paper deals with the free boundary problem for a double-layered tumor filled with quiescent cells and proliferating cells, where time delay τ > 0 $$ \tau &amp;gt;0 $$ in cell proliferation is taken into account. These two types of living cells exhibit different metabolic responses and consume nutrients σ $$ \sigma $$ at different rates λ 1 $$ {\lambda}_1 $$ and λ 2 $$ {\lambda}_2 $$ ( λ 1 λ 2 $$ {\lambda}_1\leqslant {\lambda}_2 $$ ). Time delay happens between the time at which a cell commences mitosis and the time at which the daughter cells are produced. The problem is reduced to a delay differential equation on the tumor radius R ( t ) $$ R(t) $$ over time, and the difficulty arises from the jump discontinuity of the consumption rate function. We give rigorous analysis on this new model and study the dynamical behavior of the global solutions for any initial φ ( t ) $$ \varphi (t) $$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信