{"title":"半离散基尔霍夫方程的全局可解性","authors":"Fumihiko Hirosawa","doi":"10.1002/mma.10453","DOIUrl":null,"url":null,"abstract":"<p>It is effective to consider discretized problems for partial differential equations that are difficult to analyze themselves. The global solvability of the initial value problem of the Kirchhoff equation is still unsolved except in cases where the initial value is a specially restricted class. In this paper, we prove the global solvability of the semidiscrete Kirchhoff equation, which is obtained by discretizing the Kirchhoff equation with respect to spatial variables.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 2","pages":"2600-2611"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global solvability for semidiscrete Kirchhoff equation\",\"authors\":\"Fumihiko Hirosawa\",\"doi\":\"10.1002/mma.10453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is effective to consider discretized problems for partial differential equations that are difficult to analyze themselves. The global solvability of the initial value problem of the Kirchhoff equation is still unsolved except in cases where the initial value is a specially restricted class. In this paper, we prove the global solvability of the semidiscrete Kirchhoff equation, which is obtained by discretizing the Kirchhoff equation with respect to spatial variables.</p>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 2\",\"pages\":\"2600-2611\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10453\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10453","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global solvability for semidiscrete Kirchhoff equation
It is effective to consider discretized problems for partial differential equations that are difficult to analyze themselves. The global solvability of the initial value problem of the Kirchhoff equation is still unsolved except in cases where the initial value is a specially restricted class. In this paper, we prove the global solvability of the semidiscrete Kirchhoff equation, which is obtained by discretizing the Kirchhoff equation with respect to spatial variables.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.