{"title":"具有特征参数相关边界条件的不连续狄拉克系统的频谱特性","authors":"Jiajia Zheng, Kun Li, Zhaowen Zheng","doi":"10.1002/mma.10364","DOIUrl":null,"url":null,"abstract":"<p>In this paper, Dirac system with interface conditions and spectral parameter dependent boundary conditions is investigated. By introducing a new Hilbert space, the original problem is transformed into an operator problem. Then the continuity and differentiability of the eigenvalues with respect to the parameters in the problem are showed. In particular, the differential expressions of eigenvalues for each parameter are given. These results would provide theoretical support for the calculation of eigenvalues of the corresponding problems.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 1","pages":"870-889"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral properties for discontinuous Dirac system with eigenparameter-dependent boundary condition\",\"authors\":\"Jiajia Zheng, Kun Li, Zhaowen Zheng\",\"doi\":\"10.1002/mma.10364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, Dirac system with interface conditions and spectral parameter dependent boundary conditions is investigated. By introducing a new Hilbert space, the original problem is transformed into an operator problem. Then the continuity and differentiability of the eigenvalues with respect to the parameters in the problem are showed. In particular, the differential expressions of eigenvalues for each parameter are given. These results would provide theoretical support for the calculation of eigenvalues of the corresponding problems.</p>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 1\",\"pages\":\"870-889\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10364\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10364","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Spectral properties for discontinuous Dirac system with eigenparameter-dependent boundary condition
In this paper, Dirac system with interface conditions and spectral parameter dependent boundary conditions is investigated. By introducing a new Hilbert space, the original problem is transformed into an operator problem. Then the continuity and differentiability of the eigenvalues with respect to the parameters in the problem are showed. In particular, the differential expressions of eigenvalues for each parameter are given. These results would provide theoretical support for the calculation of eigenvalues of the corresponding problems.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.