Ghaus Ur Rahman, Dildar Ahmad, José Francisco Gómez‐Aguilar, Ravi P. Agarwal, Amjad Ali
{"title":"不同阶的卡普托分数导数和黎曼-刘维尔积分及其在多期微分方程中的应用研究","authors":"Ghaus Ur Rahman, Dildar Ahmad, José Francisco Gómez‐Aguilar, Ravi P. Agarwal, Amjad Ali","doi":"10.1002/mma.10392","DOIUrl":null,"url":null,"abstract":"In this article, we initially provided the relationship between the RL fractional integral and the Caputo fractional derivative of different orders. Additionally, it is clear from the literature that studies into boundary value problems involving multi‐term operators have been conducted recently, and the aforementioned idea is used in the formulation of several novel models. We offer a unique coupled system of fractional delay differential equations with proper respect for the role that multi‐term operators play in the research of fractional differential equations, taking into account the newly established solution for fractional integral and derivative. We also made the assumptions that connected integral boundary conditions would be added on top of ‐fractional differential derivatives. The requirements for the existence and uniqueness of solutions are also developed using fixed‐point theorems. While analyzing various sorts of Ulam's stability results, the qualitative elements of the underlying model will also be examined. In the paper's final section, an example is given for purposes of demonstration.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Caputo fractional derivative and Riemann–Liouville integral with different orders and its application in multi‐term differential equations\",\"authors\":\"Ghaus Ur Rahman, Dildar Ahmad, José Francisco Gómez‐Aguilar, Ravi P. Agarwal, Amjad Ali\",\"doi\":\"10.1002/mma.10392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we initially provided the relationship between the RL fractional integral and the Caputo fractional derivative of different orders. Additionally, it is clear from the literature that studies into boundary value problems involving multi‐term operators have been conducted recently, and the aforementioned idea is used in the formulation of several novel models. We offer a unique coupled system of fractional delay differential equations with proper respect for the role that multi‐term operators play in the research of fractional differential equations, taking into account the newly established solution for fractional integral and derivative. We also made the assumptions that connected integral boundary conditions would be added on top of ‐fractional differential derivatives. The requirements for the existence and uniqueness of solutions are also developed using fixed‐point theorems. While analyzing various sorts of Ulam's stability results, the qualitative elements of the underlying model will also be examined. In the paper's final section, an example is given for purposes of demonstration.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Study of Caputo fractional derivative and Riemann–Liouville integral with different orders and its application in multi‐term differential equations
In this article, we initially provided the relationship between the RL fractional integral and the Caputo fractional derivative of different orders. Additionally, it is clear from the literature that studies into boundary value problems involving multi‐term operators have been conducted recently, and the aforementioned idea is used in the formulation of several novel models. We offer a unique coupled system of fractional delay differential equations with proper respect for the role that multi‐term operators play in the research of fractional differential equations, taking into account the newly established solution for fractional integral and derivative. We also made the assumptions that connected integral boundary conditions would be added on top of ‐fractional differential derivatives. The requirements for the existence and uniqueness of solutions are also developed using fixed‐point theorems. While analyzing various sorts of Ulam's stability results, the qualitative elements of the underlying model will also be examined. In the paper's final section, an example is given for purposes of demonstration.