等熵可压缩 Navier-Stokes/Allen-Cahn 系统的波传播

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Yazhou Chen, Houzhi Tang, Yue Zhang
{"title":"等熵可压缩 Navier-Stokes/Allen-Cahn 系统的波传播","authors":"Yazhou Chen, Houzhi Tang, Yue Zhang","doi":"10.1002/mma.10458","DOIUrl":null,"url":null,"abstract":"We study the Cauchy problem for the three‐dimensional isentropic compressible Navier–Stokes/Allen–Cahn system, which models the phase transitions in two‐component patterns interacting with a compressible fluid. Under the assumption that the initial perturbation is small and decays spatially, we establish the global existence and the pointwise behavior of strong solutions to this nonconserved system. To deal with the source terms involving the phase variable, we employ the Green's function and space‐time weighted estimates. The analysis shows that the phase variable mainly contains the diffusion wave with exponential decaying amplitude over time, and consequently the density and momentum of the compressible fluid adhere to a generalized Huygens principle.","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"57 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave propagation for the isentropic compressible Navier–Stokes/Allen–Cahn system\",\"authors\":\"Yazhou Chen, Houzhi Tang, Yue Zhang\",\"doi\":\"10.1002/mma.10458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Cauchy problem for the three‐dimensional isentropic compressible Navier–Stokes/Allen–Cahn system, which models the phase transitions in two‐component patterns interacting with a compressible fluid. Under the assumption that the initial perturbation is small and decays spatially, we establish the global existence and the pointwise behavior of strong solutions to this nonconserved system. To deal with the source terms involving the phase variable, we employ the Green's function and space‐time weighted estimates. The analysis shows that the phase variable mainly contains the diffusion wave with exponential decaying amplitude over time, and consequently the density and momentum of the compressible fluid adhere to a generalized Huygens principle.\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10458\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10458","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了三维等熵可压缩 Navier-Stokes/Allen-Cahn 系统的 Cauchy 问题,该系统模拟了与可压缩流体相互作用的双组分模式的相变。在初始扰动较小且空间衰减的假设下,我们建立了这个非守恒系统的全局存在性和强解点行为。为了处理涉及相变的源项,我们采用了格林函数和时空加权估计。分析表明,相变主要包含振幅随时间呈指数衰减的扩散波,因此可压缩流体的密度和动量遵循广义惠更斯原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wave propagation for the isentropic compressible Navier–Stokes/Allen–Cahn system
We study the Cauchy problem for the three‐dimensional isentropic compressible Navier–Stokes/Allen–Cahn system, which models the phase transitions in two‐component patterns interacting with a compressible fluid. Under the assumption that the initial perturbation is small and decays spatially, we establish the global existence and the pointwise behavior of strong solutions to this nonconserved system. To deal with the source terms involving the phase variable, we employ the Green's function and space‐time weighted estimates. The analysis shows that the phase variable mainly contains the diffusion wave with exponential decaying amplitude over time, and consequently the density and momentum of the compressible fluid adhere to a generalized Huygens principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信