利用广义伯恩斯坦基函数的分时平流扩散方程谱方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shahad Adil Taher Algazaa, Jamshid Saeidian
{"title":"利用广义伯恩斯坦基函数的分时平流扩散方程谱方法","authors":"Shahad Adil Taher Algazaa, Jamshid Saeidian","doi":"10.1002/mma.10390","DOIUrl":null,"url":null,"abstract":"This paper presents two methods for solving two‐dimensional linear and nonlinear time‐fractional advection–diffusion equations with Caputo fractional derivatives. To effectively manage endpoint singularities, we propose an advanced space‐time Galerkin technique and a collocation spectral method, both employing generalized Bernstein‐like basis functions (GBFs). The properties and behaviors of these functions are examined, highlighting their practical applications. The space‐time spectral methods incorporate GBFs in the temporal domain and classical Bernstein polynomials in the spatial domain. Fractional equations frequently produce irregular solutions despite smooth input data due to their singular kernel. To address this, GBFs are applied to the time derivative and classical Bernstein polynomials to the spatial derivative. A thorough error analysis confirms the technique's accuracy and convergence, offering a robust theoretical basis. Numerical experiments validate the method, demonstrating its effectiveness in solving both linear and nonlinear time‐fractional advection–diffusion equations.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral methods utilizing generalized Bernstein‐like basis functions for time‐fractional advection–diffusion equations\",\"authors\":\"Shahad Adil Taher Algazaa, Jamshid Saeidian\",\"doi\":\"10.1002/mma.10390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents two methods for solving two‐dimensional linear and nonlinear time‐fractional advection–diffusion equations with Caputo fractional derivatives. To effectively manage endpoint singularities, we propose an advanced space‐time Galerkin technique and a collocation spectral method, both employing generalized Bernstein‐like basis functions (GBFs). The properties and behaviors of these functions are examined, highlighting their practical applications. The space‐time spectral methods incorporate GBFs in the temporal domain and classical Bernstein polynomials in the spatial domain. Fractional equations frequently produce irregular solutions despite smooth input data due to their singular kernel. To address this, GBFs are applied to the time derivative and classical Bernstein polynomials to the spatial derivative. A thorough error analysis confirms the technique's accuracy and convergence, offering a robust theoretical basis. Numerical experiments validate the method, demonstrating its effectiveness in solving both linear and nonlinear time‐fractional advection–diffusion equations.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了两种求解带有卡普托分数导数的二维线性和非线性时间分数平流扩散方程的方法。为了有效地处理端点奇异性,我们提出了一种先进的时空 Galerkin 技术和一种搭配谱方法,两者都采用了广义伯恩斯坦基函数 (GBF)。我们研究了这些函数的特性和行为,并强调了它们的实际应用。时空谱方法在时域采用 GBF,在空域采用经典伯恩斯坦多项式。由于分式方程的奇异内核,尽管输入数据平滑,但分式方程经常会产生不规则的解。为了解决这个问题,GBFs 被应用于时间导数,经典伯恩斯坦多项式被应用于空间导数。全面的误差分析证实了该技术的准确性和收敛性,为其提供了坚实的理论基础。数值实验验证了该方法,证明了它在求解线性和非线性时间分数平流扩散方程时的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral methods utilizing generalized Bernstein‐like basis functions for time‐fractional advection–diffusion equations
This paper presents two methods for solving two‐dimensional linear and nonlinear time‐fractional advection–diffusion equations with Caputo fractional derivatives. To effectively manage endpoint singularities, we propose an advanced space‐time Galerkin technique and a collocation spectral method, both employing generalized Bernstein‐like basis functions (GBFs). The properties and behaviors of these functions are examined, highlighting their practical applications. The space‐time spectral methods incorporate GBFs in the temporal domain and classical Bernstein polynomials in the spatial domain. Fractional equations frequently produce irregular solutions despite smooth input data due to their singular kernel. To address this, GBFs are applied to the time derivative and classical Bernstein polynomials to the spatial derivative. A thorough error analysis confirms the technique's accuracy and convergence, offering a robust theoretical basis. Numerical experiments validate the method, demonstrating its effectiveness in solving both linear and nonlinear time‐fractional advection–diffusion equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信