{"title":"某些收敛序列的凸面组合","authors":"Stevo Stević","doi":"10.1002/mma.10463","DOIUrl":null,"url":null,"abstract":"We consider the convex combinations , of a pair of sequences of real numbers and such that , converging to , and study the location of the limit inside the intervals , for every or for sufficiently large . We also investigate the same problem for the case of two corresponding sequences converging to . Among other results, we prove some, a bit, unexpected ones. Namely, for each , we determine the exact index at which the sequence changes the monotonicity, and we also determine the type of the monotonicity. A number of interesting remarks are also presented.","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"8 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convex combinations of some convergent sequences\",\"authors\":\"Stevo Stević\",\"doi\":\"10.1002/mma.10463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the convex combinations , of a pair of sequences of real numbers and such that , converging to , and study the location of the limit inside the intervals , for every or for sufficiently large . We also investigate the same problem for the case of two corresponding sequences converging to . Among other results, we prove some, a bit, unexpected ones. Namely, for each , we determine the exact index at which the sequence changes the monotonicity, and we also determine the type of the monotonicity. A number of interesting remarks are also presented.\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10463\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10463","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We consider the convex combinations , of a pair of sequences of real numbers and such that , converging to , and study the location of the limit inside the intervals , for every or for sufficiently large . We also investigate the same problem for the case of two corresponding sequences converging to . Among other results, we prove some, a bit, unexpected ones. Namely, for each , we determine the exact index at which the sequence changes the monotonicity, and we also determine the type of the monotonicity. A number of interesting remarks are also presented.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.