多面体重力模型中太阳辐射压力的强制周期运动

Anivid Pedros-Faura, Gavin M. Brown, Jay W. McMahon, Daniel J. Scheeres
{"title":"多面体重力模型中太阳辐射压力的强制周期运动","authors":"Anivid Pedros-Faura, Gavin M. Brown, Jay W. McMahon, Daniel J. Scheeres","doi":"10.1007/s10569-024-10206-2","DOIUrl":null,"url":null,"abstract":"<p>The exploration of small bodies in our solar system is of great interest for the planetary science community due to their high scientific value. However, their generally weak and irregular gravity fields increase the difficulty associated with close proximity operations. Moreover, solar radiation pressure (SRP) can significantly perturb the motion of objects in their vicinity, particularly for bodies with high area-to-mass ratios. In this work, we adopt the polyhedral gravity model and identify natural dynamical structures that can be used for mission operations. Further, we study forced periodic motion in the body fixed frame while accounting for the effect of SRP with eclipses. Overall, our work seeks to identify suitable orbits and locations in the vicinity of small bodies that can be exploited for the design of science orbits. To obtain periodic orbits in the model accounting for SRP perturbations, we use a Melnikov function to find orbits that satisfy resonances with the asteroid spin and show no net change in energy over the orbit. We then use a differential correction scheme to find numerical solutions in the time-periodic model. Our test cases are potentially hazardous asteroid 101955 Bennu and main belt asteroid 16 Psyche.\n</p>","PeriodicalId":72537,"journal":{"name":"Celestial mechanics and dynamical astronomy","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forced periodic motion by solar radiation pressure in the polyhedral gravity model\",\"authors\":\"Anivid Pedros-Faura, Gavin M. Brown, Jay W. McMahon, Daniel J. Scheeres\",\"doi\":\"10.1007/s10569-024-10206-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The exploration of small bodies in our solar system is of great interest for the planetary science community due to their high scientific value. However, their generally weak and irregular gravity fields increase the difficulty associated with close proximity operations. Moreover, solar radiation pressure (SRP) can significantly perturb the motion of objects in their vicinity, particularly for bodies with high area-to-mass ratios. In this work, we adopt the polyhedral gravity model and identify natural dynamical structures that can be used for mission operations. Further, we study forced periodic motion in the body fixed frame while accounting for the effect of SRP with eclipses. Overall, our work seeks to identify suitable orbits and locations in the vicinity of small bodies that can be exploited for the design of science orbits. To obtain periodic orbits in the model accounting for SRP perturbations, we use a Melnikov function to find orbits that satisfy resonances with the asteroid spin and show no net change in energy over the orbit. We then use a differential correction scheme to find numerical solutions in the time-periodic model. Our test cases are potentially hazardous asteroid 101955 Bennu and main belt asteroid 16 Psyche.\\n</p>\",\"PeriodicalId\":72537,\"journal\":{\"name\":\"Celestial mechanics and dynamical astronomy\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Celestial mechanics and dynamical astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10569-024-10206-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Celestial mechanics and dynamical astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10569-024-10206-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于太阳系中的小天体具有很高的科学价值,行星科学界对它们的探索非常感兴趣。然而,它们的引力场普遍较弱且不规则,增加了近距离操作的难度。此外,太阳辐射压力(SRP)会对其附近天体的运动产生极大的扰动,尤其是对于高面积质量比的天体。在这项工作中,我们采用了多面体重力模型,并确定了可用于任务运行的自然动力学结构。此外,我们还研究了天体固定框架中的受迫周期运动,同时考虑到了日食的 SRP 效应。总之,我们的工作旨在确定小天体附近的合适轨道和位置,以用于设计科学轨道。为了在考虑到SRP扰动的模型中获得周期性轨道,我们使用梅尔尼科夫函数来寻找满足与小行星自旋共振的轨道,并且在整个轨道上不显示净能量变化。然后,我们使用微分校正方案在时间周期模型中找到数值解。我们的测试案例是具有潜在危险的小行星 101955 Bennu 和主带小行星 16 Psyche。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Forced periodic motion by solar radiation pressure in the polyhedral gravity model

Forced periodic motion by solar radiation pressure in the polyhedral gravity model

The exploration of small bodies in our solar system is of great interest for the planetary science community due to their high scientific value. However, their generally weak and irregular gravity fields increase the difficulty associated with close proximity operations. Moreover, solar radiation pressure (SRP) can significantly perturb the motion of objects in their vicinity, particularly for bodies with high area-to-mass ratios. In this work, we adopt the polyhedral gravity model and identify natural dynamical structures that can be used for mission operations. Further, we study forced periodic motion in the body fixed frame while accounting for the effect of SRP with eclipses. Overall, our work seeks to identify suitable orbits and locations in the vicinity of small bodies that can be exploited for the design of science orbits. To obtain periodic orbits in the model accounting for SRP perturbations, we use a Melnikov function to find orbits that satisfy resonances with the asteroid spin and show no net change in energy over the orbit. We then use a differential correction scheme to find numerical solutions in the time-periodic model. Our test cases are potentially hazardous asteroid 101955 Bennu and main belt asteroid 16 Psyche.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信