利用铯硼氯溴2/银混合微腔调节热管理,实现稳定的室温低阈值蓝光照明

Shulei Li, Zhenxu Lin, Quantong Deng, Fu Deng, Mingcheng Panmai, Junying Chen, Yuheng Mao, Shimei Liu, Jun Dai, Yunbao Zheng, Rui Huang, Sheng Lan
{"title":"利用铯硼氯溴2/银混合微腔调节热管理,实现稳定的室温低阈值蓝光照明","authors":"Shulei Li, Zhenxu Lin, Quantong Deng, Fu Deng, Mingcheng Panmai, Junying Chen, Yuheng Mao, Shimei Liu, Jun Dai, Yunbao Zheng, Rui Huang, Sheng Lan","doi":"10.1016/j.optlastec.2024.111723","DOIUrl":null,"url":null,"abstract":"Realization of long-term stable lasing from all-inorganic perovskite supercrystals is highly desirable for practical applications in optoelectronic devices. However, lasing from perovskite supercrystals excited by continuous wave laser light remains a challenge due to the photoluminescence degradation induced by thermal accumulation. Here, we report highly stable lasing with low threshold fom a CsPbClBr supercrystal placed on a thin Ag film, which form a CsPbClBr/Ag microcavity, by managing the thermal distribution inside the CsPbClBr supercrystal. Combined numerical simulations and lifetime measurements, the localized electric field in such a hybrid microcavity leads to a spatially localized temperature distribution, which plays a crucial role in suppressing the thermal accumulation on the surface and in eliminating non-radiative recombination defects. The effective thermal management in the hybrid microcavity renders highly stable lasing with low threshold under the irradiation of continuouw wave laser light. Our findings provide a feasible and universal approach to the development of long-term stable perovskite laser.","PeriodicalId":19597,"journal":{"name":"Optics & Laser Technology","volume":"145 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating thermal management by a CsPbClBr2/Ag hybrid microcavity for stable room temperature blue lasing with low threshold\",\"authors\":\"Shulei Li, Zhenxu Lin, Quantong Deng, Fu Deng, Mingcheng Panmai, Junying Chen, Yuheng Mao, Shimei Liu, Jun Dai, Yunbao Zheng, Rui Huang, Sheng Lan\",\"doi\":\"10.1016/j.optlastec.2024.111723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Realization of long-term stable lasing from all-inorganic perovskite supercrystals is highly desirable for practical applications in optoelectronic devices. However, lasing from perovskite supercrystals excited by continuous wave laser light remains a challenge due to the photoluminescence degradation induced by thermal accumulation. Here, we report highly stable lasing with low threshold fom a CsPbClBr supercrystal placed on a thin Ag film, which form a CsPbClBr/Ag microcavity, by managing the thermal distribution inside the CsPbClBr supercrystal. Combined numerical simulations and lifetime measurements, the localized electric field in such a hybrid microcavity leads to a spatially localized temperature distribution, which plays a crucial role in suppressing the thermal accumulation on the surface and in eliminating non-radiative recombination defects. The effective thermal management in the hybrid microcavity renders highly stable lasing with low threshold under the irradiation of continuouw wave laser light. Our findings provide a feasible and universal approach to the development of long-term stable perovskite laser.\",\"PeriodicalId\":19597,\"journal\":{\"name\":\"Optics & Laser Technology\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics & Laser Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.optlastec.2024.111723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics & Laser Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.optlastec.2024.111723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实现全无机包光体超级晶体的长期稳定发光对于光电设备的实际应用来说是非常理想的。然而,由于热积累引起的光致发光衰减,用连续波激光激发的包晶超级晶体发出的激光仍然是一个挑战。在这里,我们报告了将铯硼氯溴超级晶体放置在银薄膜上,通过管理铯硼氯溴超级晶体内部的热分布,形成铯硼氯溴/银微腔,从而实现高度稳定的低阈值激光。结合数值模拟和寿命测量,这种混合微腔中的局部电场会导致空间局部温度分布,这在抑制表面热积累和消除非辐射重组缺陷方面起着至关重要的作用。在连续波激光的照射下,混合微腔中有效的热管理可以产生高度稳定的低阈值激光。我们的研究结果为开发长期稳定的包晶体激光器提供了一种可行的通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regulating thermal management by a CsPbClBr2/Ag hybrid microcavity for stable room temperature blue lasing with low threshold
Realization of long-term stable lasing from all-inorganic perovskite supercrystals is highly desirable for practical applications in optoelectronic devices. However, lasing from perovskite supercrystals excited by continuous wave laser light remains a challenge due to the photoluminescence degradation induced by thermal accumulation. Here, we report highly stable lasing with low threshold fom a CsPbClBr supercrystal placed on a thin Ag film, which form a CsPbClBr/Ag microcavity, by managing the thermal distribution inside the CsPbClBr supercrystal. Combined numerical simulations and lifetime measurements, the localized electric field in such a hybrid microcavity leads to a spatially localized temperature distribution, which plays a crucial role in suppressing the thermal accumulation on the surface and in eliminating non-radiative recombination defects. The effective thermal management in the hybrid microcavity renders highly stable lasing with low threshold under the irradiation of continuouw wave laser light. Our findings provide a feasible and universal approach to the development of long-term stable perovskite laser.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信