{"title":"微型 LED 显示屏制造中激光加工技术的最新进展:综述","authors":"Lingxiao Song, Xuechao Yong, Peilei Zhang, Shijie Song, Kefan Chen, Hua Yan, Tianzhu Sun, Qinghua Lu, Haichuan Shi, Yu Chen, Yuze Huang","doi":"10.1016/j.optlastec.2024.111710","DOIUrl":null,"url":null,"abstract":"Micro-LED undoubtedly stands out as a highly anticipated technology when it comes to the innovation of future display technologies. Micro-LED technology surpasses traditional display technologies regarding color representation, energy efficiency, and flexibility by individually assembling tiny light-emitting diodes on a substrate. Micro-LED technology, a further evolution of LED, is considered the most promising next-generation display technology due to its outstanding brightness, high contrast ratio, and extremely high pixel density. The application of laser technology in Micro-LED displays is increasingly becoming a focus of research and industry. As a highly integrated light source, lasers offer unique advantages in Micro-LED applications, including high-energy density processing, non-contact processing, precise microstructure processing and sculpting capability, efficient packaging, and improved device quality and reliability. These advantages provide a distinctive edge in achieving high-precision manufacturing and assembly of Micro-LED chips. Laser epitaxy substrate technology utilizes laser heating and material deposition to grow Micro-LED chips on a substrate. Laser etching technology achieves precise control of lasers to enable microstructure processing and sculpting of Micro-LED devices. Laser lift-off technology utilizes laser-induced decomposition of GaN to peel off the underlying material, allowing for the separation of Micro-LEDs. Laser-based massive transfer technology uses the energy of lasers to swiftly and accurately transfer Micro-LEDs from the substrate to the target substrate, enabling rapid device transfer. Lastly, laser repair technology is employed for the detection and repair of potential defects in Micro-LEDs, enhancing device quality and reliability. By utilizing lasers, we can expect to achieve higher production efficiency, more precise device manufacturing, and superior optoelectronic performance in the field of Micro-LED, thereby presenting broader prospects for future display technology and lighting applications. These laser technologies provide new solutions for Micro-LED devices’ high-precision and high-efficiency production.","PeriodicalId":19597,"journal":{"name":"Optics & Laser Technology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progress of laser processing technology in micro-LED display manufacturing: A review\",\"authors\":\"Lingxiao Song, Xuechao Yong, Peilei Zhang, Shijie Song, Kefan Chen, Hua Yan, Tianzhu Sun, Qinghua Lu, Haichuan Shi, Yu Chen, Yuze Huang\",\"doi\":\"10.1016/j.optlastec.2024.111710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-LED undoubtedly stands out as a highly anticipated technology when it comes to the innovation of future display technologies. Micro-LED technology surpasses traditional display technologies regarding color representation, energy efficiency, and flexibility by individually assembling tiny light-emitting diodes on a substrate. Micro-LED technology, a further evolution of LED, is considered the most promising next-generation display technology due to its outstanding brightness, high contrast ratio, and extremely high pixel density. The application of laser technology in Micro-LED displays is increasingly becoming a focus of research and industry. As a highly integrated light source, lasers offer unique advantages in Micro-LED applications, including high-energy density processing, non-contact processing, precise microstructure processing and sculpting capability, efficient packaging, and improved device quality and reliability. These advantages provide a distinctive edge in achieving high-precision manufacturing and assembly of Micro-LED chips. Laser epitaxy substrate technology utilizes laser heating and material deposition to grow Micro-LED chips on a substrate. Laser etching technology achieves precise control of lasers to enable microstructure processing and sculpting of Micro-LED devices. Laser lift-off technology utilizes laser-induced decomposition of GaN to peel off the underlying material, allowing for the separation of Micro-LEDs. Laser-based massive transfer technology uses the energy of lasers to swiftly and accurately transfer Micro-LEDs from the substrate to the target substrate, enabling rapid device transfer. Lastly, laser repair technology is employed for the detection and repair of potential defects in Micro-LEDs, enhancing device quality and reliability. By utilizing lasers, we can expect to achieve higher production efficiency, more precise device manufacturing, and superior optoelectronic performance in the field of Micro-LED, thereby presenting broader prospects for future display technology and lighting applications. These laser technologies provide new solutions for Micro-LED devices’ high-precision and high-efficiency production.\",\"PeriodicalId\":19597,\"journal\":{\"name\":\"Optics & Laser Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics & Laser Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.optlastec.2024.111710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics & Laser Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.optlastec.2024.111710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent progress of laser processing technology in micro-LED display manufacturing: A review
Micro-LED undoubtedly stands out as a highly anticipated technology when it comes to the innovation of future display technologies. Micro-LED technology surpasses traditional display technologies regarding color representation, energy efficiency, and flexibility by individually assembling tiny light-emitting diodes on a substrate. Micro-LED technology, a further evolution of LED, is considered the most promising next-generation display technology due to its outstanding brightness, high contrast ratio, and extremely high pixel density. The application of laser technology in Micro-LED displays is increasingly becoming a focus of research and industry. As a highly integrated light source, lasers offer unique advantages in Micro-LED applications, including high-energy density processing, non-contact processing, precise microstructure processing and sculpting capability, efficient packaging, and improved device quality and reliability. These advantages provide a distinctive edge in achieving high-precision manufacturing and assembly of Micro-LED chips. Laser epitaxy substrate technology utilizes laser heating and material deposition to grow Micro-LED chips on a substrate. Laser etching technology achieves precise control of lasers to enable microstructure processing and sculpting of Micro-LED devices. Laser lift-off technology utilizes laser-induced decomposition of GaN to peel off the underlying material, allowing for the separation of Micro-LEDs. Laser-based massive transfer technology uses the energy of lasers to swiftly and accurately transfer Micro-LEDs from the substrate to the target substrate, enabling rapid device transfer. Lastly, laser repair technology is employed for the detection and repair of potential defects in Micro-LEDs, enhancing device quality and reliability. By utilizing lasers, we can expect to achieve higher production efficiency, more precise device manufacturing, and superior optoelectronic performance in the field of Micro-LED, thereby presenting broader prospects for future display technology and lighting applications. These laser technologies provide new solutions for Micro-LED devices’ high-precision and high-efficiency production.