利用潜空间图模型增强非视线成像特征

Weihao Xu, Songmao Chen, Dingjie Wang, Yuyuan Tian, Ning Zhang, Wei Hao, Xiuqin Su
{"title":"利用潜空间图模型增强非视线成像特征","authors":"Weihao Xu, Songmao Chen, Dingjie Wang, Yuyuan Tian, Ning Zhang, Wei Hao, Xiuqin Su","doi":"10.1016/j.optlastec.2024.111538","DOIUrl":null,"url":null,"abstract":"Non-line-of-sight (NLoS) imaging reveals hidden scene from indirect diffusion signals. However, it is still challenging to balance noise suppression, detail preservation, and reconstruction efficiency. In this work, a robust framework which is centered on feature extractor and enhancement is proposed. In the framework, the feature extractor exploits the graph model in latent space for efficient noise suppression and detail preservation, the enhancement collaboratively learns the feature and data statistics by considering the extractor to define regularization. The reconstruction results on the publicly accessible datasets show that the proposed framework outperforms the state-of-art methods considering both quality and efficiency.","PeriodicalId":19597,"journal":{"name":"Optics & Laser Technology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature enhanced non-line-of-sight imaging using graph model in latent space\",\"authors\":\"Weihao Xu, Songmao Chen, Dingjie Wang, Yuyuan Tian, Ning Zhang, Wei Hao, Xiuqin Su\",\"doi\":\"10.1016/j.optlastec.2024.111538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-line-of-sight (NLoS) imaging reveals hidden scene from indirect diffusion signals. However, it is still challenging to balance noise suppression, detail preservation, and reconstruction efficiency. In this work, a robust framework which is centered on feature extractor and enhancement is proposed. In the framework, the feature extractor exploits the graph model in latent space for efficient noise suppression and detail preservation, the enhancement collaboratively learns the feature and data statistics by considering the extractor to define regularization. The reconstruction results on the publicly accessible datasets show that the proposed framework outperforms the state-of-art methods considering both quality and efficiency.\",\"PeriodicalId\":19597,\"journal\":{\"name\":\"Optics & Laser Technology\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics & Laser Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.optlastec.2024.111538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics & Laser Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.optlastec.2024.111538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非视线(NLoS)成像技术能从间接扩散信号中揭示隐藏的场景。然而,如何在噪声抑制、细节保留和重建效率之间取得平衡仍是一项挑战。在这项工作中,提出了一个以特征提取和增强为核心的稳健框架。在该框架中,特征提取器利用潜空间中的图模型实现高效的噪声抑制和细节保留,增强器则通过考虑提取器定义正则化来协同学习特征和数据统计。在公开数据集上的重建结果表明,所提出的框架在质量和效率方面都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature enhanced non-line-of-sight imaging using graph model in latent space
Non-line-of-sight (NLoS) imaging reveals hidden scene from indirect diffusion signals. However, it is still challenging to balance noise suppression, detail preservation, and reconstruction efficiency. In this work, a robust framework which is centered on feature extractor and enhancement is proposed. In the framework, the feature extractor exploits the graph model in latent space for efficient noise suppression and detail preservation, the enhancement collaboratively learns the feature and data statistics by considering the extractor to define regularization. The reconstruction results on the publicly accessible datasets show that the proposed framework outperforms the state-of-art methods considering both quality and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信