超声波辅助激光金属沉积对沉积层微裂纹的影响

Huachen Li, Li Cui, Dingyong He, Zhenfu Shi, Fanhui Bu, Qing Cao, Shengjun Wan
{"title":"超声波辅助激光金属沉积对沉积层微裂纹的影响","authors":"Huachen Li, Li Cui, Dingyong He, Zhenfu Shi, Fanhui Bu, Qing Cao, Shengjun Wan","doi":"10.1016/j.optlastec.2024.111747","DOIUrl":null,"url":null,"abstract":"In order to study the effect of non-contact ultrasonic-assisted laser metal deposition (LMD) on microcracks, Fe-based powders were deposited on a 42CrMoA steel using LMD process at different excitation distances (). The results show that the maximum length of microcracks is 112.3 μm under the condition without ultrasonic-assisted. When = 50 mm, a crack of less than 10 μm is generated at the bottom of deposition layer. When = 110 mm, the microcrack maximum length is 84.4 μm. The deposition layer with no microcracks was obtained when = 80 mm. Ultrasonic-assisted application can synergically inhibit the generation of cracks from two aspects. On the one hand, it makes the distribution of B element more uniform in the molten pool, and the accumulation of borides at the bottom of the deposition layer easily generates hard and brittle borides such as M(C,B), which is more likely to induce cracks. After non-contact ultrasonic-assisted, the width of boride is 54.2 % lower than that without ultrasonic-assisted, and the boride morphology is slightly different. The borides changed from long rod-shape and mesh-shape to nanoscale short rod-shape and granular-shape. On the other hand, it can make the microscopic stress distribution at the bottom of deposition layer more uniform, which reduces the crack sensitivity. Compared to the condition without ultrasonic-assisted, when is 50 mm, 80 mm and 110 mm, the KAM average value decreased by 44.03 %, 40.36 % and 19.27 %, respectively.","PeriodicalId":19597,"journal":{"name":"Optics & Laser Technology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ultrasonic-assisted laser metal deposition on microcracks in deposition layer\",\"authors\":\"Huachen Li, Li Cui, Dingyong He, Zhenfu Shi, Fanhui Bu, Qing Cao, Shengjun Wan\",\"doi\":\"10.1016/j.optlastec.2024.111747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to study the effect of non-contact ultrasonic-assisted laser metal deposition (LMD) on microcracks, Fe-based powders were deposited on a 42CrMoA steel using LMD process at different excitation distances (). The results show that the maximum length of microcracks is 112.3 μm under the condition without ultrasonic-assisted. When = 50 mm, a crack of less than 10 μm is generated at the bottom of deposition layer. When = 110 mm, the microcrack maximum length is 84.4 μm. The deposition layer with no microcracks was obtained when = 80 mm. Ultrasonic-assisted application can synergically inhibit the generation of cracks from two aspects. On the one hand, it makes the distribution of B element more uniform in the molten pool, and the accumulation of borides at the bottom of the deposition layer easily generates hard and brittle borides such as M(C,B), which is more likely to induce cracks. After non-contact ultrasonic-assisted, the width of boride is 54.2 % lower than that without ultrasonic-assisted, and the boride morphology is slightly different. The borides changed from long rod-shape and mesh-shape to nanoscale short rod-shape and granular-shape. On the other hand, it can make the microscopic stress distribution at the bottom of deposition layer more uniform, which reduces the crack sensitivity. Compared to the condition without ultrasonic-assisted, when is 50 mm, 80 mm and 110 mm, the KAM average value decreased by 44.03 %, 40.36 % and 19.27 %, respectively.\",\"PeriodicalId\":19597,\"journal\":{\"name\":\"Optics & Laser Technology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics & Laser Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.optlastec.2024.111747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics & Laser Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.optlastec.2024.111747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了研究非接触超声波辅助激光金属沉积(LMD)对微裂纹的影响,使用 LMD 工艺在 42CrMoA 钢上以不同的激发距离()沉积了铁基粉末。结果表明,在无超声波辅助条件下,微裂纹的最大长度为 112.3 μm。当 = 50 mm 时,沉积层底部会产生小于 10 μm 的裂纹。当 = 110 mm 时,微裂纹最大长度为 84.4 μm。当 = 80 毫米时,沉积层无微裂纹。超声波辅助应用可以从两个方面协同抑制裂纹的产生。一方面,它使 B 元素在熔池中的分布更加均匀,而硼化物在沉积层底部的堆积容易产生硬脆的硼化物,如 M(C,B),从而更容易诱发裂纹。非接触超声波辅助后,硼化物的宽度比未超声波辅助时减少了 54.2%,硼化物的形态也略有不同。硼化物从长棒状和网状变为纳米级短棒状和颗粒状。另一方面,超声波辅助可使沉积层底部的微观应力分布更加均匀,从而降低裂纹敏感性。与未使用超声波辅助的情况相比,在 50 mm、80 mm 和 110 mm 时,KAM 平均值分别降低了 44.03 %、40.36 % 和 19.27 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of ultrasonic-assisted laser metal deposition on microcracks in deposition layer
In order to study the effect of non-contact ultrasonic-assisted laser metal deposition (LMD) on microcracks, Fe-based powders were deposited on a 42CrMoA steel using LMD process at different excitation distances (). The results show that the maximum length of microcracks is 112.3 μm under the condition without ultrasonic-assisted. When = 50 mm, a crack of less than 10 μm is generated at the bottom of deposition layer. When = 110 mm, the microcrack maximum length is 84.4 μm. The deposition layer with no microcracks was obtained when = 80 mm. Ultrasonic-assisted application can synergically inhibit the generation of cracks from two aspects. On the one hand, it makes the distribution of B element more uniform in the molten pool, and the accumulation of borides at the bottom of the deposition layer easily generates hard and brittle borides such as M(C,B), which is more likely to induce cracks. After non-contact ultrasonic-assisted, the width of boride is 54.2 % lower than that without ultrasonic-assisted, and the boride morphology is slightly different. The borides changed from long rod-shape and mesh-shape to nanoscale short rod-shape and granular-shape. On the other hand, it can make the microscopic stress distribution at the bottom of deposition layer more uniform, which reduces the crack sensitivity. Compared to the condition without ultrasonic-assisted, when is 50 mm, 80 mm and 110 mm, the KAM average value decreased by 44.03 %, 40.36 % and 19.27 %, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信