{"title":"利用瑞士现场天气生成器生成小时平均地形降水时间序列","authors":"Kaltrina Maloku, Guillaume Evin, Benoit Hingray","doi":"10.1007/s00477-024-02757-5","DOIUrl":null,"url":null,"abstract":"<p>Continuous hydrological simulation is a powerful approach for generating long-term series of river discharges used for hydrological analyses. This approach requires as inputs precipitation time series generated by a stochastic weather generator (WGEN) to simulate discharge time series. For small catchments where a lumped hydrological model is suitable, the weather generator needs to generate time series of mean areal precipitation (MAP). Here we assess the ability of an at-site hybrid WGEN to generate time series of MAP for a set of test areas ranging from 9 to 1,089 km<span>\\(^2\\)</span>. The generator is composed of a model based on a Markov chain model used to generate time series of daily MAP, and a multiplicative random cascade used to disaggregate them to an hourly resolution. The work is carried out at several test locations in Switzerland with different precipitation regimes. The parameters of the model are estimated on the observed MAP time series extracted from CombiPrecip, a 1 km<span>\\(^2\\)</span> resolution radar-gauge product of precipitation assimilating rain gauges and radar data. For each test location and each test area, 100-year time series are generated and compared with the observed MAP time series. Whatever the location and spatial scale considered, the performance of the WGEN is satisfactory. The model reproduces the observed standard statistics and extreme precipitation of observed MAP very well. At an hourly resolution, better results are obtained at larger spatial scales, while no difference is noticed at a daily resolution. The study shows that using this hybrid WGEN is possible to model and generate MAP for areas ranging from 9 to 1,089 km<span>\\(^2\\)</span>. Moreover, this particular WGEN is easy to implement for end-user applications. The modelling approach is even more promising as high-resolution gridded precipitation data are expected to become increasingly available worldwide, offering a source of data to calibrate the hybrid model.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"291 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating hourly mean areal precipitation times series with an at-site weather generator in Switzerland\",\"authors\":\"Kaltrina Maloku, Guillaume Evin, Benoit Hingray\",\"doi\":\"10.1007/s00477-024-02757-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Continuous hydrological simulation is a powerful approach for generating long-term series of river discharges used for hydrological analyses. This approach requires as inputs precipitation time series generated by a stochastic weather generator (WGEN) to simulate discharge time series. For small catchments where a lumped hydrological model is suitable, the weather generator needs to generate time series of mean areal precipitation (MAP). Here we assess the ability of an at-site hybrid WGEN to generate time series of MAP for a set of test areas ranging from 9 to 1,089 km<span>\\\\(^2\\\\)</span>. The generator is composed of a model based on a Markov chain model used to generate time series of daily MAP, and a multiplicative random cascade used to disaggregate them to an hourly resolution. The work is carried out at several test locations in Switzerland with different precipitation regimes. The parameters of the model are estimated on the observed MAP time series extracted from CombiPrecip, a 1 km<span>\\\\(^2\\\\)</span> resolution radar-gauge product of precipitation assimilating rain gauges and radar data. For each test location and each test area, 100-year time series are generated and compared with the observed MAP time series. Whatever the location and spatial scale considered, the performance of the WGEN is satisfactory. The model reproduces the observed standard statistics and extreme precipitation of observed MAP very well. At an hourly resolution, better results are obtained at larger spatial scales, while no difference is noticed at a daily resolution. The study shows that using this hybrid WGEN is possible to model and generate MAP for areas ranging from 9 to 1,089 km<span>\\\\(^2\\\\)</span>. Moreover, this particular WGEN is easy to implement for end-user applications. The modelling approach is even more promising as high-resolution gridded precipitation data are expected to become increasingly available worldwide, offering a source of data to calibrate the hybrid model.</p>\",\"PeriodicalId\":21987,\"journal\":{\"name\":\"Stochastic Environmental Research and Risk Assessment\",\"volume\":\"291 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Environmental Research and Risk Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00477-024-02757-5\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02757-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Generating hourly mean areal precipitation times series with an at-site weather generator in Switzerland
Continuous hydrological simulation is a powerful approach for generating long-term series of river discharges used for hydrological analyses. This approach requires as inputs precipitation time series generated by a stochastic weather generator (WGEN) to simulate discharge time series. For small catchments where a lumped hydrological model is suitable, the weather generator needs to generate time series of mean areal precipitation (MAP). Here we assess the ability of an at-site hybrid WGEN to generate time series of MAP for a set of test areas ranging from 9 to 1,089 km\(^2\). The generator is composed of a model based on a Markov chain model used to generate time series of daily MAP, and a multiplicative random cascade used to disaggregate them to an hourly resolution. The work is carried out at several test locations in Switzerland with different precipitation regimes. The parameters of the model are estimated on the observed MAP time series extracted from CombiPrecip, a 1 km\(^2\) resolution radar-gauge product of precipitation assimilating rain gauges and radar data. For each test location and each test area, 100-year time series are generated and compared with the observed MAP time series. Whatever the location and spatial scale considered, the performance of the WGEN is satisfactory. The model reproduces the observed standard statistics and extreme precipitation of observed MAP very well. At an hourly resolution, better results are obtained at larger spatial scales, while no difference is noticed at a daily resolution. The study shows that using this hybrid WGEN is possible to model and generate MAP for areas ranging from 9 to 1,089 km\(^2\). Moreover, this particular WGEN is easy to implement for end-user applications. The modelling approach is even more promising as high-resolution gridded precipitation data are expected to become increasingly available worldwide, offering a source of data to calibrate the hybrid model.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.