作为软概率紧固件脱落动力学框架的纤维束模型

IF 1.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
A. D. Filippov, P. Sharma, F. Helmendach, J. A. Dijksman, R. C. Hidalgo
{"title":"作为软概率紧固件脱落动力学框架的纤维束模型","authors":"A. D. Filippov, P. Sharma, F. Helmendach, J. A. Dijksman, R. C. Hidalgo","doi":"10.3389/fphy.2024.1412352","DOIUrl":null,"url":null,"abstract":"Adhesives can be made by patterning surfaces with discrete adhesive elements. Nature uses this approach to provide animals with highly adaptive and robust approaches towards gaining an effective grip on surfaces. The mechanism of patterned surface adhesion involve many different attachment principles, adhesive site interactions, and probabilistic effects, the interplay of which is not understood. This limits our ability to design patterned surface adhesives for engineering applications. In this work, we quantify how a mechanically patterned adhesive based on passive mushroom-shaped elements performs. We explore a range of surface design features and model the mechanical adhesion dynamics with an approach based on the fiber bundle model (FBM). We find that the fiber bundle model can be used to rationalize the observations after modifying it to capture the initial non-linear force response of the adhesives. Additionally, we investigate the behavior of the system’s elastic energy and damage energy, as it is stretched under strain-controlled conditions. Our experimental data indicates that the elastic energy has a maximum that appears after the macroscopic strength <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mrow><mml:msub><mml:mrow><mml:mi>σ</mml:mi></mml:mrow><mml:mrow><mml:mtext>c</mml:mtext></mml:mrow></mml:msub></mml:mrow><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math></jats:inline-formula>, corresponding to strains where a full rupture of the system can no longer be prevented. Moreover, we observed that below the maximum of the constitutive curve <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>σ</mml:mi></mml:mrow><mml:mrow><mml:mtext>c</mml:mtext></mml:mrow></mml:msub></mml:math></jats:inline-formula>, the elastic energy consistently exceeds the damage energy. Finally, we found that the derivative of the elastic energy has a maximum, which always appears before <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>σ</mml:mi></mml:mrow><mml:mrow><mml:mtext>c</mml:mtext></mml:mrow></mml:msub></mml:math></jats:inline-formula>. Therefore, the derivative of the elastic energy would serve as a reliable signal of upcoming catastrophic failure in experiments under stress-controlled conditions.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"8 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fibre bundle models as a framework for the detachment dynamics of soft probabilistic fasteners\",\"authors\":\"A. D. Filippov, P. Sharma, F. Helmendach, J. A. Dijksman, R. C. Hidalgo\",\"doi\":\"10.3389/fphy.2024.1412352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adhesives can be made by patterning surfaces with discrete adhesive elements. Nature uses this approach to provide animals with highly adaptive and robust approaches towards gaining an effective grip on surfaces. The mechanism of patterned surface adhesion involve many different attachment principles, adhesive site interactions, and probabilistic effects, the interplay of which is not understood. This limits our ability to design patterned surface adhesives for engineering applications. In this work, we quantify how a mechanically patterned adhesive based on passive mushroom-shaped elements performs. We explore a range of surface design features and model the mechanical adhesion dynamics with an approach based on the fiber bundle model (FBM). We find that the fiber bundle model can be used to rationalize the observations after modifying it to capture the initial non-linear force response of the adhesives. Additionally, we investigate the behavior of the system’s elastic energy and damage energy, as it is stretched under strain-controlled conditions. Our experimental data indicates that the elastic energy has a maximum that appears after the macroscopic strength <jats:inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mrow><mml:msub><mml:mrow><mml:mi>σ</mml:mi></mml:mrow><mml:mrow><mml:mtext>c</mml:mtext></mml:mrow></mml:msub></mml:mrow><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math></jats:inline-formula>, corresponding to strains where a full rupture of the system can no longer be prevented. Moreover, we observed that below the maximum of the constitutive curve <jats:inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msub><mml:mrow><mml:mi>σ</mml:mi></mml:mrow><mml:mrow><mml:mtext>c</mml:mtext></mml:mrow></mml:msub></mml:math></jats:inline-formula>, the elastic energy consistently exceeds the damage energy. Finally, we found that the derivative of the elastic energy has a maximum, which always appears before <jats:inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msub><mml:mrow><mml:mi>σ</mml:mi></mml:mrow><mml:mrow><mml:mtext>c</mml:mtext></mml:mrow></mml:msub></mml:math></jats:inline-formula>. Therefore, the derivative of the elastic energy would serve as a reliable signal of upcoming catastrophic failure in experiments under stress-controlled conditions.\",\"PeriodicalId\":12507,\"journal\":{\"name\":\"Frontiers in Physics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3389/fphy.2024.1412352\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2024.1412352","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

粘合剂可以通过在表面上图案化离散的粘合元素来制造。自然界利用这种方法为动物提供了高度适应性和稳健性的方法,以获得对表面的有效抓力。图案化表面粘附的机理涉及许多不同的粘附原理、粘附点相互作用和概率效应,而这些机理之间的相互作用尚不清楚。这限制了我们为工程应用设计图案化表面粘合剂的能力。在这项工作中,我们量化了基于被动蘑菇形元件的机械图案粘合剂的性能。我们探索了一系列表面设计特征,并使用基于纤维束模型(FBM)的方法建立了机械粘附动力学模型。我们发现,在对纤维束模型进行修改以捕捉粘合剂的初始非线性力响应后,该模型可用于合理解释观察结果。此外,我们还研究了系统在应变控制条件下拉伸时的弹性能量和损伤能量行为。我们的实验数据表明,弹性能的最大值出现在宏观强度(σc)之后,对应于不再能阻止系统完全破裂的应变。此外,我们还观察到,在构成曲线 σc 的最大值以下,弹性能量始终超过损伤能量。最后,我们发现弹性能量的导数有一个最大值,它总是出现在 σc 之前。因此,在应力控制条件下的实验中,弹性能量的导数可作为即将发生灾难性破坏的可靠信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fibre bundle models as a framework for the detachment dynamics of soft probabilistic fasteners
Adhesives can be made by patterning surfaces with discrete adhesive elements. Nature uses this approach to provide animals with highly adaptive and robust approaches towards gaining an effective grip on surfaces. The mechanism of patterned surface adhesion involve many different attachment principles, adhesive site interactions, and probabilistic effects, the interplay of which is not understood. This limits our ability to design patterned surface adhesives for engineering applications. In this work, we quantify how a mechanically patterned adhesive based on passive mushroom-shaped elements performs. We explore a range of surface design features and model the mechanical adhesion dynamics with an approach based on the fiber bundle model (FBM). We find that the fiber bundle model can be used to rationalize the observations after modifying it to capture the initial non-linear force response of the adhesives. Additionally, we investigate the behavior of the system’s elastic energy and damage energy, as it is stretched under strain-controlled conditions. Our experimental data indicates that the elastic energy has a maximum that appears after the macroscopic strength (σc), corresponding to strains where a full rupture of the system can no longer be prevented. Moreover, we observed that below the maximum of the constitutive curve σc, the elastic energy consistently exceeds the damage energy. Finally, we found that the derivative of the elastic energy has a maximum, which always appears before σc. Therefore, the derivative of the elastic energy would serve as a reliable signal of upcoming catastrophic failure in experiments under stress-controlled conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Physics
Frontiers in Physics Mathematics-Mathematical Physics
CiteScore
4.50
自引率
6.50%
发文量
1215
审稿时长
12 weeks
期刊介绍: Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信